BERGER ASSOCIATES INC HARRISBURG PA F/G 13/13 NATIONAL DAM INSPECTION PROGRAM. LAKE LATTIMORE DAM (NDI-ID NUM--ETC(U) JUN 80 DACW31-80-C-0019 AD-A087 905 UNCLASSIFIED NL 1 - 2

DELAWARE RIVER BASIN

LAKE LATTIMORE DAM

NDI NO. PA-00406 DER NO. 52-78

LEVE

PIKE COUNTY, PENNSYLVANIA

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

LOR PLATES: ALL D

PREPARED FOR

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers

Baltimore, Maryland 21203

BY

Berger Associates, Inc. Harrisburg, Pennsylvania

JUNE 1980

FILE COPY

BERGER ASSOCIATES, INC. DACW31-80-C-0019

80 8 11

129

BE THE COP

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

ORIGINAL CONTAINS COLOR PLATES: ALL DOC ORIGINAL CONTAINS WILL BE IN BLACK AND WHITE. REPRODUCTIONS WILL BE IN PREFACE

This report has been prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

Accession For		
MTIS DDC 1	NTIS GRAMI	
1	ounced	H
Justification		
Ву		
Distr	ibution/	
Avel	lability (odes
	Avail and	•
Dist	special	
1	1231	i
/ ((c)	

i

PHASE I REPORT

NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITIONS AND RECOMMENDATIONS

Name of Dam:

LAKE LATTIMORE DAM

State & State No.:

PENNSYLVANIA, 52-78

County:

PIKE

Stream:

DINGMANS CREEK

Date of Inspection:

April 1, 1980

Based on the visual inspection, past performance and the available engineering data, the dam and its appurtenant structures appear to be in fair condition.

In accordance with the Corps of Engineers' evaluation guidelines, the size classification of this dam is small and the hazard classification is high. The Spillway Design Flood (SDF) for a dam having these classifications is in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. The recommended SDF for this dam is one-half of the PMF. The spillway capacity is inadequate to pass the SDF peak inflow without overtopping the dam. The project is capable of passing only 17 percent of the PMF. Failure of this dam will significantly increase the hazard to loss of life downstream from the dam. The spillway capacity is seriously inadequate. The project, therefore, is considered to be unsafe, non-emergency.

The following recommendations are presented for immediate action by the owner:

- 1. That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for improving the capacity of the spillway and reservoir system so that it will meet the requirements of the Commonwealth of Pennsylvania,
- That all brush and trees be removed from the embankment slopes and that a professional engineer, experienced in the design and construction of dams, be consulted for the removal of tree stumps and roots,

- 3. That the drawdown facilities be made operable and be operated and maintained on a regular basis,
- 4.5 That the deteriorated areas of the spillway weir and walls be repaired,
- 5. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged precipitation,
- 6. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

SUBMITTED BY:

BERGER ASSOCIATES, INC. HARRISBURG, PENNSYLVANIA

DATE: June 19, 1980

HENDRIK JONGSMA

APPROVED BY:

JAMES W. PECK

Colonel, Corps of Engineers

District Engineer

DATE 11 544 1980

OVERVIEW

LAKE LATTIMORE DAM

Photograph No. 1

TABLE OF CONTENTS

	Page
SECTION 1 - PROJECT INFORMATION	
	_
1.1 GENERAL	1
1.2 DESCRIPTION OF PROJECT	1 2
1.3 PERTINENT DATA	2
SECTION 2 - ENGINEERING DATA	
2.1 DESIGN	5
2.2 CONSTRUCTION	5
2.3 OPERATION	5
2.4 EVALUATION	5
SECTION 3 - VISUAL INSPECTION	
3.1 FINDINGS	7
3.2 EVALUATION	8
SECTION 4 - OPERATIONAL PROCEDURES	
4.1 PROCEDURES	9
4.2 MAINTENANCE OF DAM	9
4.3 MAINTENANCE OF OPERATING FACILITIES	9
4.4 WARNING SYSTEM	9
4.5 EVALUATION	9
SECTION 5 - HYDROLOGY/HYDRAULICS	
5.1 EVALUATION OF FEATURES	10
SECTION 6 - STRUCTURAL STABILITY	
6.1 EVALUATION OF STRUCTURAL STABILITY	13
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS	
7.1 DAM ASSESSMENT	15
7.2 RECOMMENDATIONS	15
APPENDIX A - CHECK LIST OF VISUAL INSPECTION REPORT	
APPENDIX B - CHECK LIST OF ENGINEERING DATA	
APPENDIX C - PHOTOGRAPHS	
APPENDIX D - HYDROLOGY AND HYDRAULIC CALCULATIONS	
APPENDIX E - PLATES	
ADDENDIVE CENINCIC DEDNOT	

v

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM.

LAKE LATTIMORE DAM

NDI-ID PA-60406,
DER-ID 52-78. Delaware tivet Bas. 11.

Pite County, Perusylvan as Prace I Inspection.

SECTION 1 - PROJECT INFORMATION Nevert.

1.1 GENERAL

A. Authority

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspections of dams throughout the United States.

B. Purpose

The purpose of this inspection is to determine if the dam constitutes a hazard to human life and property.

1.2 DESCRIPTION OF PROJECT

A. Description of Dam and Appurtenances

Lake Lattimore Dam, formerly known as Nyce Lake Dam, is an earthfill structure with a concrete core wall. The top of the dam is 15 feet above the original streambed elevation. The embankment is approximately 250 feet long and abuts a state highway at the right end. This highway borders the south side of the reservoir (Plate II, Appendix E). The spillway is located in the left abutment. It consists of a 110 foot long ogee section which discharges the water into a short grouted riprap channel. The forebay of the spillway is bridged by a steel beam bridge supported on 5 piers. This pedestrian bridge has a wooden deck. The emergency drawdown consists of two 42-inch pipes with slide gates at the upstream end. Access to the control structure is from the breast of the embankment.

B. Location:

Delaware Township, Pike County U.S.G.S. Quadrangle - Lake Maskenozha, Pennsylvania - New Jersey Latitude 41°-14.8', Longitude 74°-55.5' Appendix E, Plates I & II

411113

18

C. Size Classification:

Small: Height - 15 feet

Storage - 433 acre-feet

D. Hazard Classification:

High (Refer to Section 3.1.E.)

E. Ownership:

Ms. Cricket Snearing
Outdoor Program Manager
Girl Scout Council of Greater

Essex County 120 Valley Road Montclair, NJ 07042

F. Purpose:

Recreation

G. Design and Construction History

Lake Lattimore Dam was designed June 1929 by John F. Seem, C.E., Tannersville, Pennsylvania, for the Nyce brothers, the original owners. A permit for construction was issued by the Department of Environmental Resources (PennDER) on August 22, 1929. Construction started in September of that year and was supervised by the design engineer. After a winter shutdown, construction was completed on June 18, 1930. Repair work in 1965 was designed by Rinker, Kiefer and Rake, Architects-Engineers, Stroudsburg, Pennsylvania, and in 1970 by Edward C. Hess Associates, Stroudsburg, Pennsylvania. A permit for the repairs in 1970 (Plates V & VI, Appendix E) was issued September 8, 1970. The Contractor for both repairs was L. Snyder, Dingmans Ferry, Pennsylvania.

H. Normal Operating Procedures

The reservoir is used as a recreational facility during the summer months by the Girl Scouts. Operating procedures do not exist. All inflow is discharged over the uncontrolled spillway.

1.3 PERTINENT DATA

A. Drainage Area (square miles)

From files:
Computed for this report:

9.0 11.1

Use:

11.1

B. <u>Discharge at Dam Site</u> (cubic feet per second) See Appendix D for hydraulic calculations

Maximum known flood (estimated from U.S.G.S. gage records of Mill Creek at nearby Mountainhome, Pa.)

2758

	Outlet works low-pool outlet at pool Elev. 1035.0	164
	Outlet works at pool level Elev. 1041.0 (spillway crest)	280
	Spillway capacity at pool Elev. 1044.9 (low point of dam)	3322
D.	Elevation (feet above mean sea level)	
	Top of dam (low point as surveyed)	1044.9
	Top of dam (design)	1045.0
	Spillway crest (normal pool)	1041.0
	Upstream portal invert (slide gate openings)	1030.0
	Downstream portal invert	1029.5
	Streambed at centerline of dam - estimate	1030.0
D.	Reservoir (miles)	
	Length of normal pool	0.5
	Length of maximum pool	0.5
E.	Storage (acre-feet)	
	Spillway crest (Elev. 1041.0)	199
	Top of dam (Elev. 1044.9)	433
F.	Reservoir Surface (acres)	
	Top of dam (Elev. 1044.9)	69
	Spillway crest (Elev. 1041.0)	53.8

G. Dam

Refer to Plate V in Appendix E for plan and section.

Type: Homogeneous earthfill with concrete core wall.

Length: 250 feet.

Height: 15 feet.

Top Width: 10 feet.

Side Slopes:

Design

Surveyed 2.1H to 1V

Upstream Downstream 2H to 1V 2H to 1V

3.8H to 1V

Zoning: Concrete core wall to elevation 1042.0.

Grouting: None reported.

H. Outlet Facilities

Type: Two 42" diameter concrete pipes through embankment.

Location: Near center of dam.

Closure: Two 42" slide gates on upstream end.

I. Spillway

Type: Concrete ogee section.

Width: 110 feet.

Location: Left abutment.

Crest Elevation: 1041.0

Low Flow Notch: 30' wide at elevation 1040.9

Approach Channel: 120' wide with bridge located about 40'

upstream of right end of ogee.

Downstream Channel: Grouted riprap apron.

J. Emergency Outlet

See Section 1.3.H.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

The engineering design data for Lake Lattimore Dam (Nyce Lake) are not very extensive and are limited to the construction drawings prepared by the design engineers. The original design drawings, prepared in 1929, consisted of four drawings of which two have been reproduced as Plates III and IV in Appendix E. One drawing, not reproducible, indicated that test pits were excavated. Overburden was about four feet thick consisting of clay underlain by hardpan. A report prepared by PennDER on the application for a permit to construct the dam indicates that the spillway capacity was 3375 cfs which was considered to be adequate.

Repairs to the facilities were made in 1970. The available design data consists of two drawings, reproduced as Plates V and VI in Appendix E. Plate V is a tracing of one of the original drawings.

2.2 CONSTRUCTION

The available construction data are limited to the design drawings and some inspection reports by a representative of the State. These reports indicate that the overburden consisted of a mixture of clay and stone over yellow hardpan. The trenches for the core wall and ogee section were excavated into this hardpan. A spring was encountered during the excavation to the right of the blowoff pipes. The final report indicates that the construction was apparently accomplished with good workmanship.

2.3 OPERATION

Formal records of operation have not been maintained by the owner(s). Inspection reports in the 30's and 40's indicate that maintenance was not good. Indications are that brush and trees were present on the embankment slopes.

Scepage adjacent to the blowoff pipes was recorded in 1935 and presumed to originate from the spring encountered during construction. The original bridge over the spillway forebay collapsed in 1948 and was replaced at a later date.

2.4 EVALUATION

A. Availability

The available data, consisting of construction drawings and inspection reports, are located in the files of PennDER.

B. Adequacy

The available engineering data, combined with the visual site inspection, are considered to be adequate for making a reasonable assessment of the dam and its appurtenant structures.

C. Operating Records

Operating records, including maximum pool levels, are not maintained by the owners.

D. Post Construction Changes

Besides some repair work of the spillway crest and spillway abutment walls, a change was made to the top of the control tower. The upper part of this structure was replaced in 1970 (Plate VI, Appendix E) and the access footbridge to this structure was replaced with earthfill between two retaining walls.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

A. General

The general appearance of Lake Lattimore is fair. Brush and trees are growing on the upstream and downstream slopes of the embankment. The spillway ogee section has some spalling of concrete and the gates on the outlet facilities are rusted and could not be operated during the inspection.

The visual inspection check list and sketches of the general plan and profile of the dam, as surveyed during the inspection, are presented in Appendix A of this report. Mr. Art Hoehne represented the owners and accompanied the inspectors.

 $\,$ Photographs taken on the day of inspection are reproduced in Appendix C.

B. Embankment

A heavy growth of small trees and brush is present on the upstream and downstream slopes of the embankment. Signs of stability problems or seepage were not detected on the slopes. The toe of the dam was dry. The design drawings indicate a long low embankment paralleling the state highway. At the present, the edge of the reservoir is adjacent to the shoulder of the highway. It appears that the highway has been raised and that a portion of the dam embankment was incorporated into the highway fill. The profile, as surveyed (Plate A-II), indicates that the embankment has a low point at elevation 1044.9. The embankment ends at the road. The road forms a barrier on the south side of the reservoir. A small area south of the roadway is at a lower elevation and has no apparent outlet. The highway rises to the east and prevents any flow in that direction.

C. Appurtenant Structures

The spillway forebay was excavated into the left hillside (Plate V, Appendix E) and is bridged by a steel beam structure supported by five concrete piers. The concrete of the piers shows deterioration (Photograph 4, Appendix C). This does not affect the safety of the dam.

The spillway section is a 110 foot long ogee nearly perpendicular to the centerline of the dam. The ogee section shows some deterioration consisting of exposed aggregate and spalling of a few corners at construction joints. Although the spalling is not serious,

preventive maintenance is recommended. The weir has a small notch located near the center of its length for low flow. The slab below the ogee section consists of grouted riprap and is in fair condition.

A low concrete wall on the left side has deteriorated and should be repaired to prevent future damage to the riprap and the hillside. A concrete wall on the right side is constructed against the embankment fill. This wall makes a 90° turn at the toe of the fill and forms the right spillway wall and continues as the headwall for the outlet pipe. This wall is in good condition. Two 42-inch concrete pipes were installed. These pipes are closed off with sliding gates at the upstream end and are operated by controls located on the top of a concrete endwall. Concrete walls extend from the tower to the embankment. Backfill was placed between these walls, thus providing access to the tower from the embankment. The gates were last operated in 1970. On the day of inspection, the gates could not be budged. The operating mechanism is heavily rusted.

D. Reservoir Area

The reservoir is surrounded by wooded slopes except where the highway borders the reservoir. The banks appeared to be stable.

E. Downstream Channel

The downstream channel below the spillway is a natural stream with exposed rocks on the bottom and sides. The channel passes under the highway about 500 feet downstream from the dam and flows through a State park half a mile further downstream. Extensive picnic facilities exist in this park within the floodplain. There are several cottages near the stream about 7700 feet downstream. A potential hazard to loss of life exists downstream if the dam fails. The hazard category for this dam is considered to be "High."

3.2 EVALUATION

The overall visual evaluation of these facilities indicates that the dam and its appurtenant structures are in fair condition, mainly due to poor or non-existing maintenance procedures. Recommendations include removal of all brush and trees from the embankment and some repair of the spillway weir and walls. The sliding gates on the outlet should be greased and operated at regular intervals.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

The operational procedures at Lake Lattimore Dam are limited. The reservoir is used for recreation and the pool level is maintained at the elevation of the spillway crest. Any additional inflow is discharged over the spillway.

4.2 MAINTENANCE OF DAM

The top of the dam provides access to the Girl Scout Camp and is kept free of trees and brush. The embankment slopes, however, are covered with trees and brush and no maintenance has been provided.

4.3 MAINTENANCE OF OPERATING FACILITIES

The gates on the outlet pipes have not been maintained or operated during the past 10 years. The handle to operate the gate stems is stored in the basement of the caretakers house.

4.4 WARNING SYSTEM

A formal surveillance and downstream warning system does not exist at the present time.

4.5 EVALUATION

The operational procedures for these facilities should include the removal of trees, brush and high weeds on an annual basis. The operating mechanism of the sliding gates should be greased regularly and the gates should be opened at least on an annual basis.

A formal surveillance and downstream warning system should be developed for use during periods of high or prolonged precipitation.

SECTION 5 - HYDROLOGY/HYDRAULICS

5.1 EVALUATION OF FEATURES

A. Design Data

The hydrologic and hydraulic analyses available from PennDER for Lake Lattimore Dam were not very extensive. No stage-discharge curve, stage-storage curve, unit hydrograph, nor flood routings were contained in the PennDER files.

B. Experience Data

There are no records of flood levels at Lake Lattimore Dam. Based on records of the U.S.G.S. stream gage on Mill Creek at nearby Mountainhome, Pa., the maximum inflow to Lake Lattimore is estimated to be 2758 cfs. This flood was apparently passed without difficulty.

C. Visual Observations

On the date of the inspection, no conditions were observed that would indicate that the appurtenant structures of the dam could not operate satisfactorily during a flood event until the dam is overtopped. It was noted that the gates on the outlet works are rusted and could not be operated. Upstream of Lake Lattimore are three manmade dams and two natural lakes. These impoundments were included in the hydrologic evaluation in Appendix D.

D. Overtopping Potential

Lake Lattimore has a total storage capacity of 433 acre-feet and an overall height of 15 feet, both referenced to the top of the dam. These dimensions indicate a size classification of "Small," the hazard classification is "High" (See Section 3.1.E.).

The recommended Spillway Design Flood (SDF) for a dam having the above classification is in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. Because of the size, the recommended SDF is one-half the PMF. For this dam, the SDF peak inflow is 11,085 cfs (See Appendix D for HEC-1 inflow computations).

Comparison of the estimated SDF peak inflow of 11,085 cfs with the estimated spillway discharge capacity of 3,322 cfs indicates that a potential for overtopping of Lake Lattimore exists.

An estimate of the storage effect of the reservoir and routing of the computed inflow hydrograph through the reservoir shows that this dam does not have the necessary storage available to pass the SDF without

overtopping. The spillway-reservoir system can pass only a flood event equal to 17% of a PMF.

action recommendations in the analysis of the last the la

E. Dam Break Evaluation

The calculations to determine the behavior of the dam in the event of an overtopping and a resulting breaching of the embankment indicates that there will be a substantial increase in water levels downstream from the dam.

Several cottages are located about 7,700 feet downstream from the dam. On the basis of the results of a dam break analysis, using the U.S. Army Corps of Engineers HEC-1 program, the water surface elevation: in the vicinity of the houses have been compared for several conditions prior to and after a dam break. (Refer to Table 1, Appendix D). For an earth embankment, it is estimated that one-half foot of overtopping would result in a breach. For this report, it was assumed that the concrete core wall would fail when the embankment crodes. Calculations indicate that 22 percent of the PMF inflow would cause an overtopping of 0.5 foot. The increase in water levels downstream due to overtopping of 1/2 foot with no failure as compared to no overtopping would be 0.9 to 1.5foot. While more property would be exposed to flooding, the increase to the hazard to loss of life is not considered significant. With failure, however, the breaching analysis indicates a rise of 1.6 feet above the flow level just prior to breach when considering a 15 minute time to complete the breach and a 1.0 foot rise above flow level just prior to breach when considering a one hour time to complete the breach. The increase in hazard to loss of life and property damage is reflected not only in the increase in depth of water of 1.6 feet in the 15 minute breach and 1.0 foot in the one hour breach, but more significantly in the shorter time to reach the peak. Less time would be available to respond to the flooding under the breach conditions.

Being an earth embankment, it is judged that the breach would be completed between the 15 minute and the one hour period. The numerical difference of water levels is 0.6 foot. The property damage would be similar with either time of failure. Again, however, the time factor is most significant regarding loss of life. Calculations indicate that the water depth will increase at a rate of 1.6 feet in 30 minutes under the 15 minute breach condition.

Three dams and two natural lakes are located upstream of Lake Lattimore Dam. For this evaluation, none of those dams were considered to have failed (See Appendix D).

On the basis of these calculations, it is concluded that the bazard to loss of life and property damage is significantly increased

when the dam is overtopped and failed as compared to the condition just prior to failure.

Refer to Table 1, Appendix D, for comparison of flood water levels.

F. Spillway Adequacy

The small size category and high hazard category, in accordance with the Corps of Engineers criteria and guidelines, indicates that the spillway design flood for this dam should be in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. The recommended SDF is one-half PMF.

Calculations show that the spillway discharge capacity and reservoir storage capacity combine to handle only 17% of the PMF (Refer to Appendix D).

Since the spillway discharge and reservoir storage capacity cannot pass one-half of the PMF and because the downstream hazard to loss of life is high and this hazard is significantly increased when the dam fails as compared to just prior to failure, the spillway is judged to be seriously inadequate.

The hydrologic analysis for this investigation was based upon existing conditions of the watershed. The effects of future development were not considered.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

A. Visual Observations

1. Embankment

The visual inspection of Lake Lattimore Dam did not detect any signs of embankment instability. There were no signs of sloughs or seepage. The downstream slope is apparently flatter than the design drawings indicate. Additional fill was placed to the top of the right spillway wall.

2. Appurtenant Structures

The spillway weir and walls show some deterioration, but are apparently stable. No excessive settlement or deflection was noted during the inspection. The outlet and control structure appears to be in good stable condition. There were no signs of cracking or movement in the joints.

B. Design and Construction Data

1. Embankment

The typical section and plans in Appendix E indicate that a concrete core wall was placed in a trench. This wall has an indicated base width of about 2.5 feet and extends up to one foot above normal pool level. Inspection reports indicate that the foundation for this core wall was inspected and approved by a State engineer. A 12-inch thick layer of riprap was placed on the upstream slope. There are no indications of a toe drain.

2. Appurtenant Structures

The concrete ogee section is keyed into the hardpan and has a base width of six feet and appears to be adequate for the height of construction. Details of the abutment walls are limited. The walls are not reinforced. Photographs taken during construction indicate wall thickness of two to four feet, varying with height.

The spillway slab downstream of the weir consists of grouted handlaid riprap with a two foot deep cutoff wall at the downstream end (Plate IV, Appendix E).

The concrete at the upstream end of the outlet pipe apparently deteriorated considerably and was replaced in 1970 with new

concrete starting at about 2.5 feet above the top of the pipes (Plate VI, Appendix E). The walls extending from this tower to the embankment are reinforced. The embankment foundation apparently has consolidated sufficiently so that these walls have not settled or cracked.

The outlet pipe has one seepage collar besides the cutoff wall formed by the core wall.

C. Operating Records

Operating records for this dam have not been maintained.

D. Post Construction Changes

Changes were limited to repair work on the spillway wall (in 1965) and the reconstruction of the intake control structure. The reconstruction of the highway in the early 60's included raising the roadway and incorporating the embankment, paralleling the road, into the roadway fill.

E. Seismic Stability

This dam is located in Seismic Zone 1 and it is considered that the static stability is sufficient to withstand minor earthquake-induced dynamic forces. No studies or calculations have been made to confirm this assumption.

SECTION 7 - ASSESSMENT AND RECOMMENDATIONS

7.1 DAM ASSESSMENT

A. Safety

The visual inspection and the review of the available design and construction data indicate that Lake Lattimore Dam is in fair condition. The design of the dam appears to be adequate and the inspection did not detect any signs of instability or seepage that could indicate an unsafe condition. Improved maintenance practices are required to ensure continued safe operation of the facilities.

The hydrologic and hydraulic computations indicate that the combination of reservoir storage capacity and the spillway discharge are adequate to pass only 17 percent of the PMF. Failure of the dam due to overtopping will significantly increase the hazard to loss of life downstream of the dam. The spillway capacity is seriously inadequate. The dam, therefore, is considered to be unsafe, non-emergency.

B. Adequacy of Information

The design and construction information contained in the files of PennDER, combined with the visual inspection, are considered to be adequate for making a reasonable assessment of this dam.

C. Urgency

 $\label{thm:commendations} The \ \mbox{recommendations} \ \mbox{presented below should be implemented immediately.}$

D. Additional Studies

A detailed hydrologic and hydraulic analysis should be performed by a professional engineer, experienced in the design and construction of dams, to determine means for improving the capacity of the spillway.

7.2 RECOMMENDATIONS

In order to assure the continued satisfactory operation of this dam, the following recommendations are presented to the owner for immediate implementation:

1. That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for improving the capacity of the spillway and reservoir system so that it will meet the requirements of the Commonwealth of Pennsylvania.

- 2. That all brush and trees be removed from the embankment slopes and that a professional engineer, experienced in the design and construction of dams, be consulted for the removal of tree stumps and roots.
- 3. That the drawdown facilities be made operable and be operated and maintained on a regular basis.
- 4. That the deteriorated areas of the spillway weir and walls be repaired.
- 5. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged precipitation.
- 6. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

APPENDIX A

CHECKLIST OF VISUAL INSPECTION REPORT

CHECK LIST

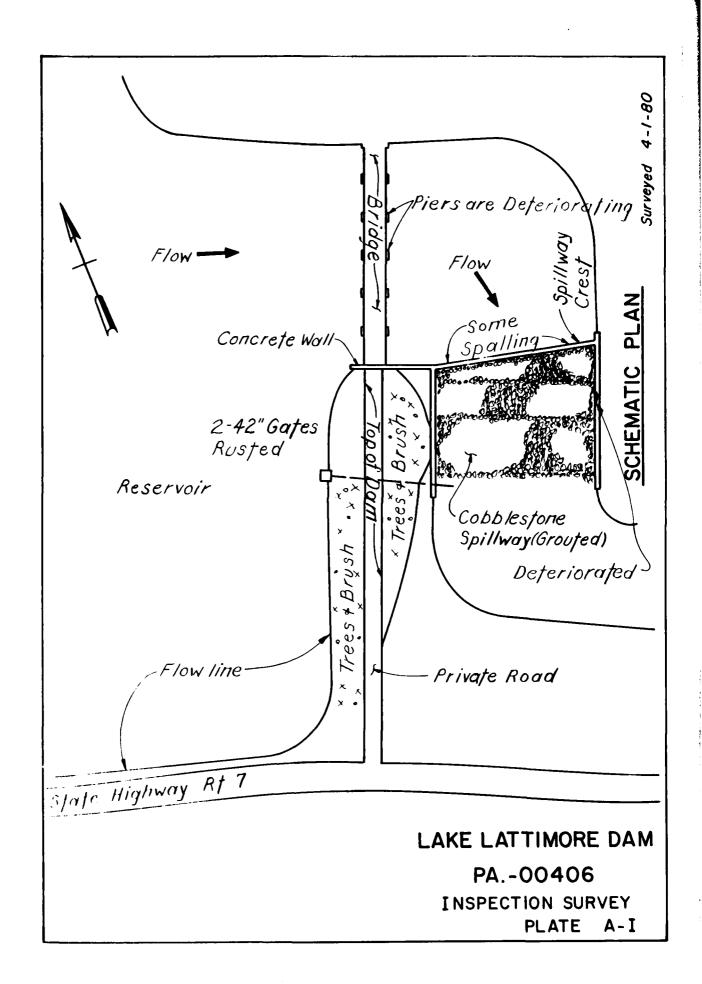
PHASE I - VISUAL INSPECTION REPORT

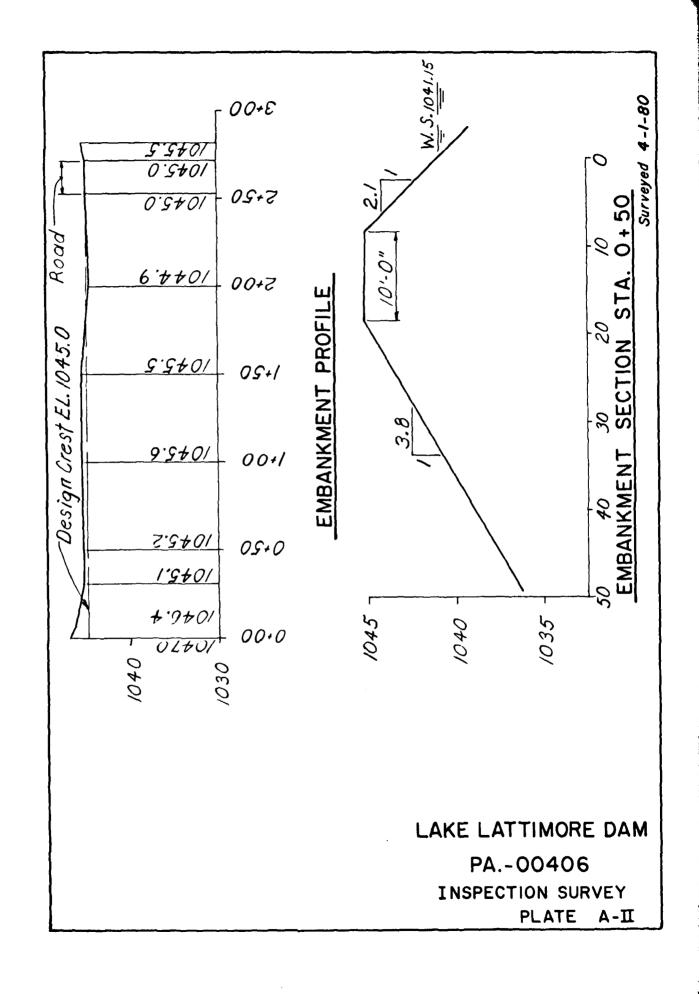
PA DER # 52-78	NDI NO. PA-00406	
NAME OF DAM Lake Lattimore Dam	HAZARD CATEGORY High	
TYPE OF DAM Earth embankment		
LOCATION Delaware TOWNSHIP	Pike COUNTY, PENNSYLVANIA	
INSPECTION DATE 4/1/80 WEATHER Clear, sunny TEMPERATURE 40-50		
INSPECTORS: R. Houseal (Recorder)	OWNER'S REPRESENTATIVE(s):	
H. Jongsma	Art Hoehne	
R. Shireman		
A. Bartlett	**************************************	
NORMAL POOL ELEVATION: 1041.0 AT TIME OF INSPECTION:		
BREAST ELEVATION: 1045.0 (Design)	POOL ELEVATION: 1041.15	
SPILLWAY ELEVATION: 1041.0	TAILWATER ELEVATION:	
MAXIMUM RECORDED POOL ELEVATION: No records		
GENERAL COMMENTS:		
Attempted to open gates; not successfu	1.	

VISUAL INSPECTION EMBANKMENT

	OBSERVATIONS AND REMARKS
A. SURFACE CRACKS	None evident.
	None evident.
·	1
·	
B. UNUSUAL MOVEMENT	
BEYOND TOE	None evident.
DETOND TOE	}
C. SLOUGHING OR EROSION	None evident.
OF EMBANKMENT OR	
ABUTMENT SLOPES	
D. ALIGNMENT OF CREST:	
HORIZONTAL:	Horizontal - good.
VERTICAL:	Vertical - Refer to Profile, Plate A-II.
E. RIPRAP FAILURES	No riprap failures evident.
F. JUNCTION EMBANKMENT	Abutment good at bridge and near roadway.
& ABUTMENT OR	modement good at bridge and hear roadway.
SPILLWAY	
G. SEEPAGE	None observed.
	Note observed.
H. DRAINS	
n. DKAINS	None observed.
J. GAGES & RECORDER	None.
}	
1	
K. COVER (GROWTH)	
N. OOVER (GROWTH)	Trees and brush on both slopes upstream and
	downstream. Crest - grass covered.
<u></u>	

VISUAL INSPECTION OUTLET WORKS


	OBSERVATIONS AND REMARKS
A. INTAKE STRUCTURE	Headwall with gates and controls for two 42" pipes.
B. OUTLET STRUCTURE	Endwall through which the two 42" steel pipes
C. OUTLET CHANNEL	discharge.
	Excavated open channel with brush and small trees on the near 1:1 side slopes. Channel is clear of obstructions.
D. GATES	Two 42" gates controlling the discharge through the 42" Ø steel pipes. Rising stem type controls are rusty and need some maintenance attention.
E. EMERGENCY GATE	Refer to D. above.
F. OPERATION & CONTROL	Unknown. Gates probably last opened in 1970.
G. BRIDGE (ACCESS)	Approach directly from embankment. No bridge.


VISUAL INSPECTION SPILLWAY

	OBSERVATIONS AND REMARKS
A. APPROACH CHANNEL	Approach channel is from side of main reservoir. It turns 90° to the right to meet the main spillway.
B. WEIR: Crest Condition Cracks Deterioration Foundation Abutments	The spillway is an ogee type section. Its condition is fair as indicated by exposed aggregate and the loss of some spots along the crest. The walls are in good condition showing only slight cracks. They are vertical and do not appear to have settled or otherwise been displaced.
C. DISCHARGE CHANNEL: Lining Cracks Stilling Basin	Discharge channel below ogee is stone lined and has a slope break in the flow path. Several large (4" to 6") clump trees are growing in the channel just at the toe of the chute. There is no stilling basin.
D. BRIDGE & PIERS	One bridge spans the approach channel. Refer to sketch for location. It has 5 concrete piers which support two steel girders and a wooden deck.
E. GATES & OPERATION EQUIPMENT	None.
F. CONTROL & HISTORY	No records.

VISUAL INSPECTION

	OBSERVATIONS AND REMARKS
INSTRUMENTATION Monumentation	None.
Observation Wells	None.
Weirs	None.
Piezometers	None.
Staff Gauge	None.
Other	None.
RESERVOIR	
Slopes	Woodlands.
Sedimentation	None reported 4:1±.
Watershed Description	Lightly wooded, some residential developments.
DOWNSTREAM CHANNEL Condition	Natural stream, Dingman Creek. Stone bottom.
Slopes	Wooded, moderate slopes.
Approximate Population	Varies. Child State Park about 1/2 mile down- stream. Dingmans Ferry is 4 miles downstream.
No. Homes	Several cottages near the stream about 7700 feet downstream.

APPENDIX B
CHECKLIST OF ENGINEERING DATA

CHECK LIST ENGINEERING DATA

PA DER # 52-78

NDI NO. PA-00406

NAME OF DAM Lake Lattimore Dam

ITEM	REMARKS
AS-BUILT DRAWINGS	Not existing. Design drawings in PennDER files.
REGIONAL VICINITY MAP	U.S.G.S. Quadrangle - Lake Maskenozha, PA-NJ See Plate II, Appendix E
CONSTRUCTION HISTORY	Foundation inspection reports by state representative.
GENERAL PLAN OF DAM	Plate V, Appendix E.
TYPICAL SECTIONS OF DAM	Plate III, Appendix E.
OUTLETS: PLAN DETAILS CONSTRAINTS DISCHARGE RATINGS	Plates III through VI, Appendix E. None. None.
` `	

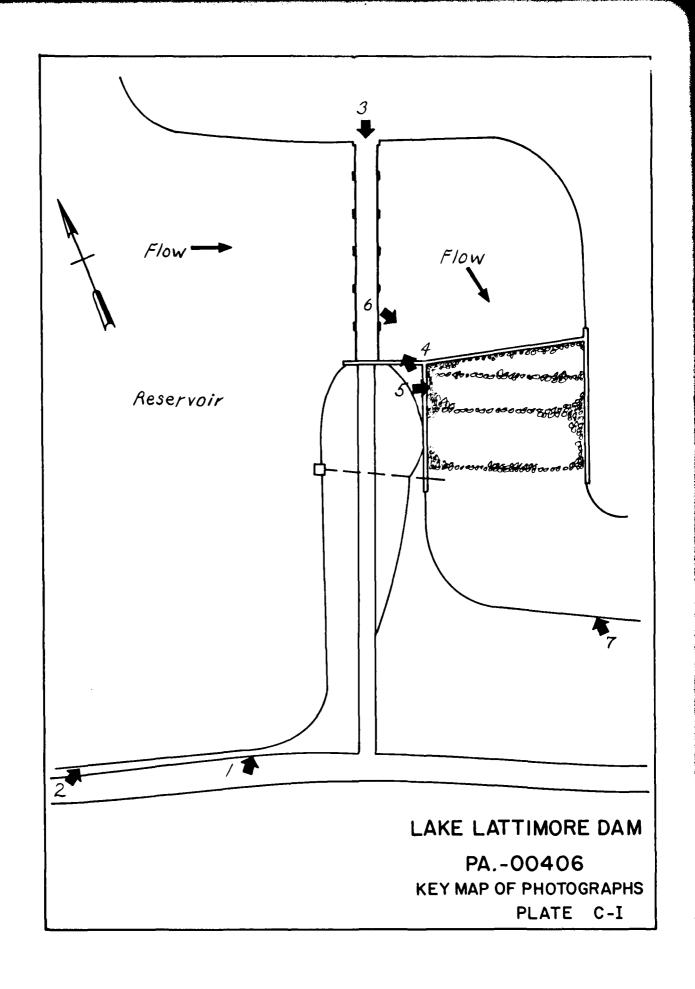
ENGINEERING DATA

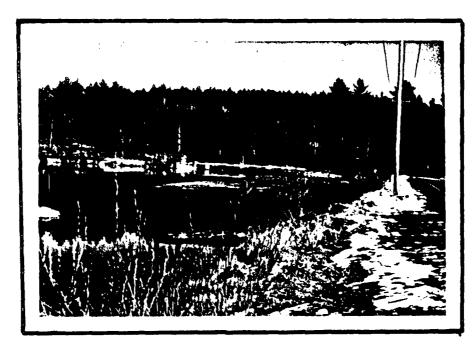
ITEM	REMARKS
RAINFALL & RESERVOIR RECORDS	No records.
DESIGN REPORTS	Not available.
GEOLOGY REPORTS	None.
DESIGN COMPUTATIONS: HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None.
MATERIALS INVESTIGATIONS: BORING RECORDS LABORATORY FIELD	None. None. 3 test pits.
POST CONSTRUCTION SURVEYS OF DAM	None.
BORROW SOURCES	Unknown.

ENGINEERING DATA

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	None.
HIGH POOL RECORDS	No records.
POST CONSTRUCTION ENGINEERING STUDIES & REPORTS	None.
PRIOR ACCIDENTS OR FAILURE OF DAM Description: Reports:	None.
MAINTENANCE & OPERATION RECORDS	None, except inspection reports by state.
SPILLWAY PLAN, SECTIONS AND DETAILS	Plate IV and V, Appendix E.

ENGINEERING DATA

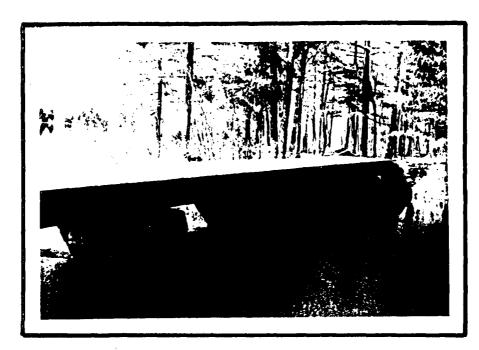

ITEM	REMARKS
OPERATING EQUIPMENT, PLANS & DETAILS	Two upstream slide gates on construction outlet.
CONSTRUCTION RECORDS	Inspection report by state during the excavation period.
PREVIOUS INSPECTION REPORTS & DEFICIENCIES	None.
MISCELLANEOUS	


CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE	AREA CHARACTERISTICS: woodland and swamps
ELEVATIO	ON:
ТОР	NORMAL POOL & STORAGE CAPACITY: Elev. 1041 Acre-Feet 1
TOF	FLOOD CONTROL POOL & STORAGE CAPACITY: Elev. 1044.9 Acre-Feet 4
MA	(IMUM DESIGN POOL: Elev. 1045
ТОР	P DAM: Elev. 1044.9
SPILLWAY	
a.	Elevation 1041 with low flow notch at 1040.9
ь.	Typeconcrete ogee section
с.	Width 110'
	Length
	Location Spillover <u>left abutment</u>
f.	Number and Type of Gates <u>none</u>
OUTLET \	WORKS:
a.	Type two 42" diameter concrete pipes with slide gates
ь.	Location center of dam
с.	Entrance inverts 1030
d.	Exit inverts 1030
е.	Emergency drawdown facilities 2 slide gates
HYDROME	TEOROLOGICAL GAGES:
a.	Type none
	Location
	Records
MAXIMUM	NON-DAMAGING DISCHARGE: 1322 cfs

APPENDIX C

PHOTOGRAPHS



FIEW FROM HIGHWAY TO UPSTREAM SLOPE - NO. 2

FOOTBRIDGE, EMBANKMENT IN BACKGROUND $\sim \, {\rm No.} \, \, \, 3$

FOOTBRIDGE. NOTE DETERIORATION OF PIERS - NO. 4

SPILLWAY - NO. 5

PA-00406 Place C-III

DOWNSTREAM CHANNEL. NOTE DETERIORATION ON LEFT SPILLWAY WALL - NO. 6

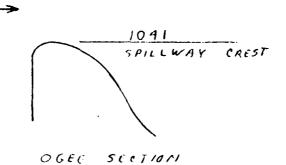
LOOKING UPSTREAM TO SPILLWAY - NO. 7

APPENDIX D
HYDROLOGY AND HYDRAULIC CALCULATIONS

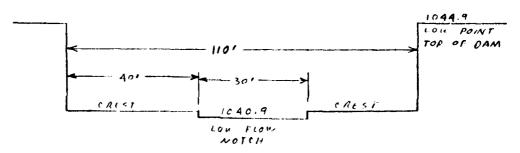
SUMMARY DESCRIPTION OF FLOOD HYDROGRAPH PACKAGE (HEC-1) DAM SAFETY VERSION

The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version.

The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the overtopping potential of the dam, and (2) the capability to estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam overtopping analysis is shown below.

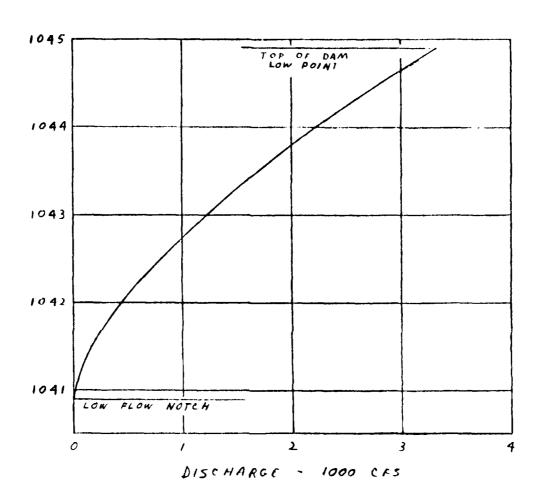

- Development of an inflow hydrograph to the reservoir.
- Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach.

The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure.


The results of the studies conducted for this report are presented in Section 5.

For detailed information regarding this program refer to the Users Manual for the Flood Hydrograph Package (HEC-1) Dam Safety Version prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

SPILLWAY RATING


C = 3.88 (SMALL DAMS)

H; 1044.9 - 1040.9 : 4'
L; 30'
H2: 1044.9 - 1041 : 3.9'
L: 80'

$$Q = 3.88 \times 30 \times (4)^{1.5} + 3.88 \times 80 \times (3.9)^{1.5}$$
= 3312 CF5

SPILLWAY RATING CURVE

DISCHARGE THROUGH OUTLE MORKS

THO AL" DIA. CONCRETE PIPES WITH SLIDE GATE

C: 0.6

IMVERT LLEV. 1030

a: CAVIGH

AT POOL ELEV 1041

H: 1041 - 1031.88: 9.12

Q = 2x 0.6 x 1 x (3.5) 4 x (2x32.2x 9.12) 0.5

= 280 CF5

AT LOW POOL ELEV 1035

H: 1035- 1031.88 = 312

Q = 2 x 0.6 x 17 x (3.5)24 x (2x32.2 x 3.12)0.5

= 164 CF5

CHKD. BY DATE PROJECT D763C

LANGE LANTIMORE

MAXIMUM KNOWN FLOCO A: DAM SITE

THERE ARE NO RECORDS OF POOL LEVELS FOR THIS DAM. BASED ON THE RECORDS OF THE GAGE STATION FOR MILL CREEK AT NEARBY MICHAININHOME, PA. (D.A. 5.84 SR.MI.) THE MAXIMUM DISCHARGE AT THE GAGE OCCURACO IN JULY 1969 WHEN A DISCHARGE OF 1650 CFS WAS OBSERVED. THE MAXIMUM INFLOW TO LAKE CATTIMORE DAM 15 ESTIMATED TO BE:

$$R = \left(\frac{11.1}{5.84}\right)^{0.8} \times 1650$$

= 2758 CFS

DESIGN FLOOD

SIZE CLASSIFICATION MAXIMUM STORAGE = 433 ACRE-FEET MAXIMUM HEIGHT = 15 FEET SIZE CLASSIFICATION IS SMALL

HAZARD CLASSIFICATION STATE PARK AND VILLAGE OF DINGMANS FERRY LOCATED ALONG THE DOWNSTREAM CHANNEL. USE "HIGH"

RECOMMENDED SPILLWAY DESIGN FLOOR THE AROVE CLASSIEICATIONS INDICATE USE OF AM SOF ERUNE TO ONL HALF PMF TO THE PROBABLE MAXMUM I LOUP

EMBANKMENT RATING

C= 2.7 (NINGS HOAK)

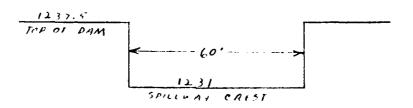
AT ELLV 1046

$$2.7 \times 26 \times (.45)^{1.5} = 42$$

$$2.7 \times 1.17 \times (.45)^{15} = 14$$

 $2.7 \times 11 \times (.75)^{15} = 17$

AT LIEV 1047


UPSIREAM RESCRIOIR

MARCEL LAKE 23' HIGH DAM
800' LONG

SPILLWAY RATING

OGEC SECTION C= 3.88 (SMALL DAMS)

EMBANKMENT (: 1.7 (KINGS HOER)

 $R = (L/H)^{3/2}$ $3.88 \times 60 \times (6.5)^{1.5}$ $3.858 \quad CFS$

SILVER LAKE NATURAL LAKE

NATURAL OUILLE 1-1.7

G: (LH 1/2) : 27 × 10 × (1) 115 : 27 CF5 94 RIS. DATE 1/9/87 BERGER ASSOCIATES SHEET NO. 7 OF 11 PROJECT 1276 5 CHKD. BY DATE
SUBJECT LAKE LATTIMERE UPSIALAM RESERVOIR CAMP MASSAD LAKE 10' WCH DAM 450' 10MC SPICENTI RATION CCIE SECTION C 3.88 (CMAIL DAMS) EMBANKMENT C 1.7 (HINGS HOBK) 1175.5 TOP OF DAM 1170 SPILLWAY CREST Q: CLH 3/1 = 3.80 × 110 × (5.5) 15 5505 615 10' HIGH DAM WOOD PECKER LAKE 300' LONG SPILLUAY BATING PROADPRISTED, ROCK LINER CT 2.7 1 MINANAMILIA () /

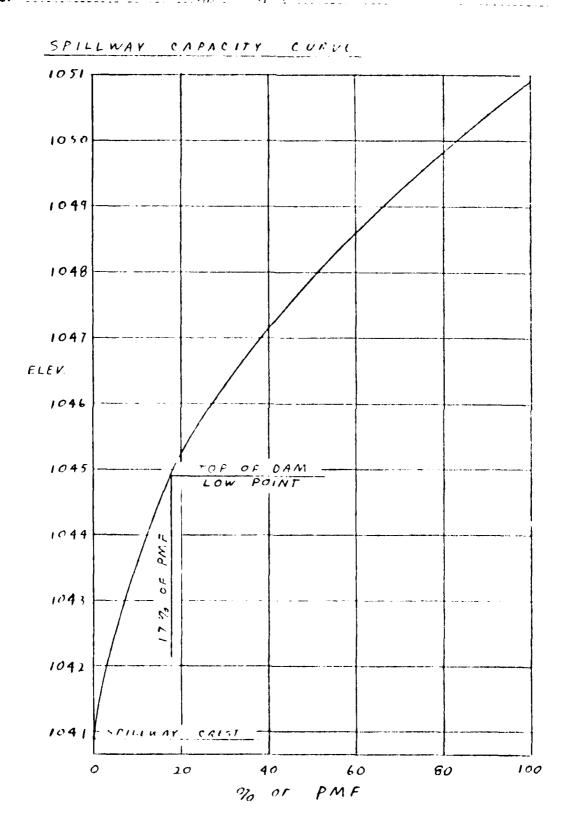
< ----- 41' ···---- >

SPILLWAY CREST

TOP OF DAM

Q'CLH3"

= 27x4/x(2)'s = 3/3 crs


II The second of the second

16 FOUTING VALLE OV

TA CONTINUE X CONTINUE

24 CONTINUE X SECTION

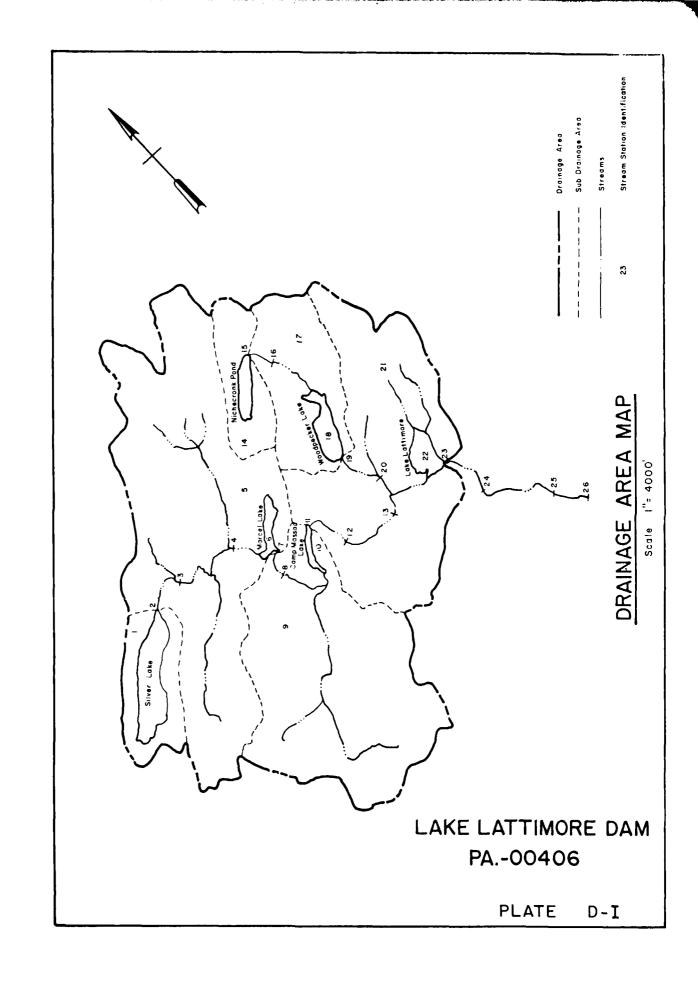
LAMAGE CENTER

SHEET NO.

BREACH ASSUMPTIONS

BREACH WINTH 50'

SINI SCORES (LANTH EMBANKMENT) = 1:1


I ALLURY TIME CLAPIC EMPRAPHYS NITH PARTIAL MALL) BITHICK IS MIN. AND I HA. USE: 126 Mr., 18 MR., 18 MR.

POOL LESTE AT FAILURE: CARTO EMBANKAILAT SAY O.S F. CIER TOP OF DAM (Core wall expeditor to FAIL ACTOR EMBANKMENT CHORES)

UPSIRLAM DAME:

MIRCH LAME : AND CLIPTIFE BY 220 PAIR CAMP MASSAN LAKE: ACT OVERTOPPED BY 2290 PMP MODDFORTA LAKE - CULTICIFED O.1' BY 21%, PAIR. ACT EXPECTED TO CASE FAILURE.

. UPSIDIAN DAMS WILL ACT PAR DUE TO OULTIOTENO PRIOR TO BREACH OF LAKE INTIMERI DAM.

HYDROLOGY AMD HYDRAULIC ANALYSIS DATA BASE

	DAM: LAKE LATTIMORE MAXIMUM PRECIPITATION			INCHES/	24 HOURS
	S SEE NEXT FAGE)				
	STATION		2	3	4
STATION DE	SCRIPTION	SILVER LAKE	MARCEL LAKE	MARCEL LAKE DAM	CAMP MASSAD LAKE
DRAINAGE	AREA (SQUARE MILES)	.64	3.74		2.75
CUMULATIV (SQUARE I	E DRAINAGE AREA MILE)	.64	4.38	4.38	7.13
ADJUSTMENT OF PMP FOR DRAINAGE AREA (%) (2)	6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS Zone 1	111 123 133 142	111 123 133 142		111 123 133 142
НҮБЯОЗЯАРН МЕТЕRS	ZONE (3) C _p /C ₁ (4) L (MILES) (5) L c ₀ (MILES) (5)	1 .45/1.23 L1= .28	1 .45/1.23 2.88		1 .45/1.23 3.35 1.40
SNYDER HYDROG PARAMETERS	$T_p = C_1 \left(L \cdot L_{ca} \right)^{0.3} \qquad \text{(hours)}$	$C_{t}(L^{1})^{0.6} = .57$	1.52		1.96
ব	CREST LENGTH (FT.)	10		60	
DAT	FREEBOARD (FT.)	1	 	6.5	
> -	DISCHARGE COEFFICIENT	2.7		3.88	
SPILLWAY	EXPONENT	1.5		1.5	
ې ت	ELEVATION	1307		1231	
G	NORMAL POOL	140.2	29.5		12.3
AREA (6)	ELEV	1320 = 175	1240 = 41.9		1180 = 25.6
E T)	NORMAL POOL (7)	3704	159		61.4
STORAGE ACRE-FEE	ELEV	1228 = 0	1214.9 = 0		1055 = 0

HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE

	DAM: LAKE LATTIMORE				
PROBABLE	MAXIMUM PRECIPITATION	(PMP) =	21.9	INCHES/2	4 HOURS
(FOR FOOTNOTE	S SEE NEXT PAGE)		 	J	
	STATION	1	2	3	4
STATION DE	ESCRIPTION	LAKE DAM	NICHERCRONK POND	WOODPECKER LAKE	WOODPECKER LAKE DAM
DRAINAGE	AREA (SQUARE MILES)		. 40	.98	
CUMULATIV (SQUARE I	E DRAINAGE AREA MILE)	7.13	.40	1.38	1.38
ADJUSTMENT OF PMP FOR DRAINAGE AREA (%) ⁽²⁾	6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS Zone 1		111 123 133 142	111 123 133 142	
Hate	ZONE (3) C p /C1 (4)		1 .45/1.23	1 .45/1.23	
SNYDER HYDROGRAPH PARAMETERS	L (MILES) (5) L ca (MILES) (5)		$L^1 = .57$	1.74	
SNYOER PAR,	$T_p = C_{\uparrow} (L \cdot L_{co})^{O.3}$ (hours)		C _t (L ¹) ^{0.6} =	1.08	
વ	CREST LENGTH (FT.)	110	10		41
DAT	FREEBOARD (FT.)	5.5	1		2
۲- ۲-	DISCHARGE COEFFICIENT	3.88	2.7		2.7
SPILLWAY	EXPONENT	1.5	1.5		1.5
g g	ELEVATION	1170	1266		1176
(9)	NORMAL POOL		38.0	57.7	
AREA '6	ELEV.		1280 = 69.2	1180 = 117.	9
STORAGE ACRE - FEET)	NORMAL POOL (7) FLEV		353 1238.1 = 0	192.3 1166 = 0	
STA	ELEV (6)				

HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE

NAME OF	DAM: LAKE LATTIMORE	RIV	ER BASIN:	DELAWAI	RE
PROBABLE	MAXIMUM PRECIPITATION	(PMP) =	21.9	INCHES/2	4 HOURS"
FOR FOOTNOTE	S SEE NEXT PAGE)	- 1	ı ————————————————————————————————————		
STATION DE	STATION	LAKE	I.AKE LATTIMORE	3	4
	LOCKE TION	LATTIMORE	DAM		
DRAINAGE	AREA (SQUARE MILES)	2.62			
CUMULATIV (SQUARE I	E DRAINAGE AREA	11.13	11.13		
ADJUSTMENT OF PMP FOR DRAINAGE AREA (%) (2)	6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS Zone 1	111 123 133 142 -			
I a	ZONE (3)	1			
HYDROGRAPH IETERS	C _p /C ₁ (4)	.45/1.23			
YDR(L (MILES) (5)	2.20			
ZA WE	L ca (MILES) (5)	.80			
SNYDER HYDROG PARAMETERS	$T_p = C_1 \left(L \cdot L_{co} \right)^{O.3} \qquad \text{(hours)}$	1.46			
ব	CREST LENGTH (FT.)		110		
DAT	FREEBOARD (FT.)		4		
> -	DISCHARGE COEFFICIENT		3.88		
SPILLWAY	EXPONENT		1.5		
e. E.	ELEVATION		1041		
19	NORMAL POOL	53.8			
AREA (6 (ACRES)	ELE V	1060=126.9			
AC (AC	ELEV.				
ET.)	NORMAL POOL (7)	199			
STORAGE ACRE-FEE	ELEV	1029.9=0			
TOR	ELEV				
N A	ELEV (e)				

- (1) Hydrometeorological Report 33 (Figure 1), U.S. Army, Corps of Engineers, 1956.
- (2) Hydrometeorological Report 33 (Figure 2), U.S. Army, Corps of Engineers, 1956.
- (3) Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients (C_p and C_t).
- (4) Snyder's Coefficients.
- (5) $_{\rm L}$ = Length of longest water course from outlet to basin divide. $_{\rm Ca}$ = Length of water course from outlet to point opposite the centroid of drainage area.
- (6) Planimetered area encompased by contour upstream of dam.
- (7) PennDER files.
- (8) Computed by conic method.

TABLE NO. 1

COMPARISON OF WATER SURFACE ELEVATIONS

LAKE LATTIMORE DAM

PMF = 23,807 cfs

Crest Elevation - 1044.9 Low Point - 1044.9 Spillway Elevation - 1040.9

	STAGE	CREST OF ELEVATION	DAM DEPTH	7700' D/S OF DAM* ELEVATION
Α.	At Low Point in Embankment Crest	1044.9	0	751.6
В.	22% PMF Overtopping No Breach	1045.51	.61	752.5
c.	22% PMF Overtopping (15 Min. Breach)	1045.42	.52	754.1
D.	22% PMF Overtopping (1 Hour Breach)	1045.43	.53	753.5

^{*}Several cottages located about 7700 feet downstream of Lake Lattimore Dam. This area was considered to be the damage center.

Condition C: (Time refers to elapsed time after start of storm). Time to reach breach elevation 1045.4 at dam = 42.25 Hours. Water level 7700' downstream prior to breach = 752.5. Duration of breach = 15 Minutes. Time for breach to peak 7700' downstream = .5 Hours. Peak elevation 7700' downstream due to breach = 754.1. Rate of increase in water level = 1.6 in 30 Minutes.

			• an	fee, ()	. 1							·
	АТ Ты, атряого	sic instit	HEING.						•			
	916-440-2329 (1/3	/
_	FLOOF HYDROGRA										,	,
(m)	DAM SAFETY VER		JULY 19									
	LAST MODIFIE											
3	********	*******	*****	11								
•	1	A1			LAKE LAT	TIMORE DA	AM ###1	B DING	HANS CREE	K		
	2	A2			DELAWARE							
0	3	A3	700		NDI # PA			ER # 52-				
	* 5	B B1	300 5	0	15	0	0	0	0	0	-4	0
	6	J	1	9	1							
G	7	Ji	i	•85	.75	.6	٠5	.4	.3	•2	•1	
	8	K	•	1		••	**	• •	1	••	••	
(3)	9	K1			INFLOW H	YDROGRAP	H - SILVI	ER LAKE	SUBAREA			
•	10	H	1	1	.64		11.13					
	11	P		21.9	111	123	133	142				
0	12 13	T W	57	45					1	•05		
	14	X	.57 -1.5	.45 05	2							
_	15	h h	1	2	4				1			
0	16	K1	-	_	RESERVOI	R ROUTIN	G - THRU	STIVER	-			
	17	Y				1						
a	18	Y1	i						3704	-1		
	19	Y4	1307	1308	1309	1310	1311					
	20	Y5	0	27	481	1286	2320					
3	21 22	\$4	1220	140.2	175							
	23	55	1228 1307	1307	1320							
^	24	\$D	1308									
Ø	25	K	1	3					1			
	26	K1	_	_	ROUTING	THRU REA	CH 2 - 3		-			
0	27	Y				1						
	28	Y1	1									
	29	Y6	•1	.08	.1	1279	1320	2400	.0117			
•	30 31	47 4 7	980	1320 1280	350 1650	1300 1300	890 1980	1280 1 320	910	1279	920	1279
	32	, , , , , , , , , , , , , , , , , , ,	1	1200	1030	1300	1700	1320	1			
^	33	1.1 1.1	•	•	ROUTING	THRU REA	ACH 3 - 4	١	•			
J	34	γ				1		•				
	35	Y1	1									
۵	36	46	•1	.08	•1	1244	1300	4200	.0083			
•	37	Y7	0	1280	10	1280	370	1260	440	1244	450	1244
	38 39	Y7	600	1260	760	1280	1050	1300				
٥	40	k k1		5	TNELOU	HYDRUGRAF	nave.	EL LAKE	1 CHEADEA			
	41	н	1	1	3.74	TIEROUNHI	11.13	LL LANE	JUDHKEH			
(3	42	P	-	21.9	111	123	133	142				
9	4,3	Ţ							1	.05		
	44	Ų	1.52	.45								
0	45	X	-1.5	05	2							
_	46 47	K k t	2	6	COMPTHE	UVBBBBB	NEAD AT Y	ADDEL '	1			
	48	K1 K	1	7		HYDROGRA	erna Al F	IMNUEL L	AKE 1			
	49	K1	•	,		IR ROUTIA	NG - THRU	I NARTFI	_			
	50	Ϋ́				1	.5 11110		LINE			
•	1 51	Y1	1			-			159			
•	52	\$A	0	29.5								
	53		214.9	1231								
0	54	11	1231	60	3.8B	1.5						

```
٨I
                                      COMBINE HIDROUKALHS AT MAKLEL LAKE
                                 7
  48
                          1
  49
                                      RESERVOIR ROUTING - THRU MARCEL LAKE
                    k1
                                                                                                  2.31
  50
  51
                    11
                           1
                                                                          159
  52
                                29.5
                                        41.9
                           0
                    SA
  53
                                1231
                    $E1214.9
                                        1240
  54
                    $$ 1231
                                  60
                                        3.88
                                                  1.5
   55
                    $D1237.5
                                 2.7
                                         1.5
                                                  800
  56
                                   8
                    K
                           1
                                                                             1
   57
                    K1
                                      ROUTING THRU REACH 7 - 8
  58
                    Y
                                                   1
   59
                    Y6
                           1
   60
                    Y6
                          .1
                                 .08
                                          . 1
                                                 1207
                                                         1260
                                                                  900
                                                                         .0138
   61
                    Y7
                           0
                                1260
                                         200
                                                 1240
                                                          400
                                                                  1220
                                                                           720
                                                                                  1207
                                                                                           730
                                                                                                   1207
   62
                    Y7
                         840
                                1220
                                         1050
                                                 1240
                                                         1200
                                                                  1260
   63
                    K
                                   9
                                                                             1
   64
                    11
                                       INFLOW HYDROGRAPH - CAMP MASSAD LAKE SUBAREA
                           1
   65
                                        2,75
                                                        11.13
                    ₽
                                          111
   66
                                21.9
                                                  123
                                                          133
                                                                  142
   67
                                                                             1
                                                                                   .05
                                 .45
   68
                        1.96
   69
                        -1.5
                                 -.05
                                            2
   70
                           2
                                  10
   71
                                       COMBINE HYDROGRAPHS AT CAMP MASSAD LAKE
   72
                           1
   73
                                       RESERVOIR ROUTING - THRU CAMP MASSAD LAKE
                    K1
   74
                    Y
                                                    1
   75
                    Y1
                           1
                                                                          61.4
                                 12.3
                                         25.6
   ?6
                    $A
                           0
   77
                    $E
                       1155
                                 1170
                                         1180
   78
                    55
                        1170
                                  110
                                         3.88
                                                  1.5
   79
                    $D1175.5
                                  2.7
                                                  450
                                          1.5
   80
                    A
                          1
                                  12
                                                                             1
   81
                                       ROUTING THRU REACH 11 - 12
                    М
   83
                                                   1
   83
                     Y1
   84
                           . i
                                  .08
                                                  1146
                                                          1200
                                                                  2000
                                           . 1
                                                                           .01
                     Y7
                            0
                                 1200
                                          100
                                                  1180
                                                          1030
                                                                  1160
                                                                          1220
                                                                                           1230
                                                                                  1146
                                                                                                   1146
                     Y7
                        1670
   86
                                 1160
                                         1880
                                                  1180
                                                          2000
                                                                  1200
   81
                    K
                           1
                                 13
   88
                     ٨i
                                       ROUTING THRU REACH 12 - 13
   89
                                                    1
   90
                     Y 1
                           1
                          .09
                                  .06
                                          .07
                                                  1081
                                                          1140
                                                                  3100
                     16
                                                                           .021
   92
                     Y7
                            0
                                 1140
                                          200
                                                  1120
                                                           350
                                                                  1100
                                                                           520
                                                                                   1081
                                                                                                   1081
                                                                                            530
   93
                     Y7
                         1110
                                 1100
                                         1500
                                                  1120
                                                          1700
                                                                  1120
   74
                     ٨
                                   14
   95
                                       INFLOW HYDROGRAPH - NICHERCRONN POND SURAREA
                     M
   96
                                          . 4
                                                         11.13
   97
                                 21.9
                                          111
                                                   123
                                                          133
                                                                   142
   98
                                                                                    .05
   99
                          .89
                                  . 45
                                            2
   100
                         -1.5
                                 -.05
1 101
                     ķ
                          1
                                   15
   102
                                       RESERVOIR ROUTING - THRU NICHERCRONK FOND
                     M
   103
                                                     1
   104
                     Y1
                            1
                                                                            353
                                                                                     -1
   105
                         1266
                                 1267
                                         1238
                                                  1269
                                                          1270
                                                                  1271
   106
                     Y5
                            0
                                   27
                                          290
                                                   779
                                                          1697
                                                                  3064
   107
                     44
                            0
                                    ₹Ŗ
                                          69.3
                     $11210.1
                                          ITRA
                                 1244
```

```
21.9
                                         111
                                                 123
                                                         133
                                                                 142
   98
                    Ţ
                                                                          1
                                                                                 .05
                                                                                            3/31
   99
                         .88
                                 .45
  100
                    X
                        -1.5
                                -.05
                                           2
1 101
                    Ň
                          1
                                 15
  102
                    M
                                      RESERVOIR ROUTING - THRU NICHERCRONK POND
  103
                    Y
                                                   1
  104
                    Y1
                         1
                                                                         353
                                                                                  -1
  105
                    Y4
                       1266
                                1267
                                        1268
                                                1269
                                                        1270
                                                                1271
  106
                    Y5
                                 27
                                        290
                           0
                                                 779
                                                        1697
                                                                3064
  107
                    SA
                           0
                                 38
                                        69.2
  108
                    $E1238.1
                                        1280
                                1266
  109
                    15 1266
  110
                    $D 1267
  111
                    ĸ
                                 16
                         1
                                                                           1
  112
                    K1
                                      ROUTING THRU REACH 15 - 16
  113
                    Y
                                                   1
  114
                    11
                          1
  115
                    16
                          .1
                                 .08
                                          .1
                                                1200
                                                        1260
                                                                1200
                                                                        .055
  116
                    Y7
                          0
                                1260
                                         180
                                                1240
                                                         400
                                                                1220
                                                                         470
                                                                                1200
                                                                                         480
                                                                                                1200
  117
                    Y7
                         575
                                1220
                                         740
                                                1240
                                                         900
                                                                1260
  118
                    K
                                 17
                                      INFLOW HYDROGRAPH - WOODPECKER LAKE SUBAREA
  119
                    K1
  120
                    H
                           1
                                 1
                                         .98
                                                       11.13
  121
                    P
                                21.9
                                         111
                                                 123
                                                         133
                                                                 142
   122
                    Ţ
                                                                           1
                                                                                 .05
   123
                        1.49
                                 .45
                                 -.05
   124
                    X
                        -1.5
                                           2
   125
                    K
                           2
                                  18
   126
                    K1
                                      COMBINE HYDROGRAPHS AT WOODPECKER LAKE
   127
                     ĸ
                           1
   128
                                      RESERVOIR ROUTING - THRU WOODPECKER LAKE
                    11
   129
   130
                     11
                           1
                                                                       192.3
   131
                     $A
                           0
                                57.7 117.9
   132
                     $E
                        1166
                                 1176
                                       1180
   133
                     15
                        1176
                                  41
                                         2.7
                                                 1.5
   134
                        1178
                     $ D
                                 2.7
                                         1.5
                                                 300
   135
                     K
                           1
                                  20
                                                                           1
   136
                                      ROUTING THRU REACH 19 - 20
                     M
   137
                     Y
                                                   1
   1.48
                     ۲1
                           1
   139
                     Y6
                          . 1
                                 .08
                                          - 1
                                                1077
                                                        1120
                                                                 2700
                                                                          .05
   140
                     Y7
                           0
                                 1120
                                                 1100
                                          110
                                                         220
                                                                 1080
                                                                          230
                                                                                 1079
                                                                                         240
                                                                                                1079
   141
                     Y7
                          250
                                 1080
                                          550
                                                 1100
                                                         660
                                                                 1120
   142
                     K
                                  21
   143
                                       INFLOW HYDROGRAPH - LAKE LATTIMORE SUBAREA
                     M
                                 1
   144
                     Ħ
                            1
                                        2.62
                                                       11.13
   145
                     P
                                 21.9
                                         111
                                                  123
                                                       133
                                                                 142
   146
                     Ţ
                                                                           1
                                                                                  .05
   147
                     W
                         1.46
                                 .45
   148
                         -1.5
                                 -.05
   147
                     ٨
                            3
                                   22
   150
                     N1
                                       COMBINE HYDROGRAPHS AT LAKE LATTIMORE
1 151
                                  23
                            1
                                       RESERVOIR ROUTING - THRU LAKE LATTIHORE
   152
   153
                                                   1
   154
                     Y1
                           1
                                                                          199
                                                                                   -1
   155
                     Y41040.9
                               1041.5
                                         1042 1042.5
                                                         1043
                                                                 1044 1044.9 1045.5
                                                                                         1046
                                                                                                 1047
                     Y4 1048
   156
                                 1047
                                         1050
                                                1051
   157
                     15
                                          445
                                                 803
                            0
                                  164
                                                         1232
                                                                 2248
                                                                         3322
                                                                                 4232
                                                                                         5292
                                                                                                 8017
   †5,0
                     YS 11339
                                        17 149
                                                23937
                                15137
```

.

152	NI		RESERVO	IR ROUTIN	IG - THRU	LAKE L	ATTIMORE			4/31
153	Y			1						7/3/
154	Y1 1						199	-1		
155	Y41040.9	1041.5	1042	1042.5	1043	1044	1044.9	1045.5	1046	1047
156	Y4 1048	1049	1050	1051						
157	Y5 0	164	445	806	1232	2248	3322	4232	5292	8017
158	Y5 11339	15137	19349	23937						
159	\$A 0	53.8	126.9							
160	\$E1029,9	1041	1060							
161	\$\$1040.9									
162	\$01044.9									
163	K 99									
		DOCUM		BULLICE OF	CEDEAN A	JETUDDY.	PALCULAT	Tour		

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNUFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
FOUTE HYDROGRAPH TO	4
RUNDER HYDROGRAPH AT	5
COMBINE 2 HYDROGRAPHS AT	6
ROUTE HYDROGRAPH TO	7
ROUTE HYDROGRAPH TO	8
RUNDEF HYDROGRAPH AT	9
COMBINE 2 HYDROGRAPHS AT	10
ROUTE HYDROGRAPH TO	11
ROUTE HIDROGRAPH TO	12
ROUTE HYDROGRAPH TO	13
RUNOFF HYDROGRAPH AT	14
ROUTE HYDROGRAPH TO	15
ROUTE HYDROGRAPH TO	16
RUNDEF HYDROGRAPH AT	17
COMBINE 2 HYDROGRAPHS AT	18
ROUTE HYDROGRAPH TO	19
ROUTE HYDROGRAPH TO	20
RUNDFF HYDROGKAPH AT	21
COMPTHE 3 HIDROGRAPHS AT	22
ROUTE HYDROGRAPH TO	23
END OF NETWORK	

RUN PATE # 80/05/13. TIME# 06.07.43.

	JOB SPECIFICATION												
NO	NHR	NHIN	TDAY	IHR	IMIN	METRC	IPLT	IPRT	NSTAN				
300	0	15	0	0	0	0	0	-4	0				
			JOPER	NHT	LROPT	TRACE							
			5	0	0	0							

EAN OUTFLOW IS 13628. AT TIME 42.25 HOURS

TOUTFLOW IS 11085. AT TIME 42.25 HOURS

PEAK OUTFLOW IS 8537. AT TIME 42.50 HOURS

PEAK OUTFLOW IS 6113. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 3840. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 1832. AT TIME 43.00 HOURS

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR HULLIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET FER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

				RATIOS APPLIED TO FLOWS										
OPERATION	STATION	area	PLAN	RATIO 1 1.00	RATIO 2 •85	.75	RATIO 4	7 011AR	A 01TAR	RATIO 7	RATIO 8	RATE9 9		
HYDROGRAPH AT	1	.64	1	2443.	2076.	1832.	1466.	1221.	977,	733.	469.	_44,		
	•	1.66)	•		58.80)(41,50)(34,59)(27.67)(20.75)(6.921		
ROUTED TO	2	.64	1	1219.	788.	831.	583.	426.	302.	173.	27.	14.		
	(1.66)	(34.51)(27.98)(23.53)(16.50)(12.07)(8.54)(4.90)(.82)(.40)		
ROUTED TO	3	.64	1	1215.	986.	8.8.	581.	423.	299.	171.	29.	14.		
	(1.66)	(34.42)(27.92)(23.46)(16.46)(11.98)(8.47)(4.85)(.81)(•40)		
ROUTED TO	4	.64	1		978.	821+	574.	420.	296.	166.	29.	14.		
	(1.66)	(34.29)(27.70)(23.24)(16.25)(11.88)(8.40)(4.70)(.80)(•403		
HYDROGRAPH AT	-	3.74	1		7360.	6474.	5195.	4329.	3464.	2578	173?.	865.		
	(9.69)	(245.20)(208.42)(183.90)(147.12)(122.60)(98.08)(73.56)(49.04)(24.521		
2 COMBINED	6	4.38	i		E134.	7101.	5566.	4564.	3590.	2634.	1749.	375.		
	(11.34)	(273,85)(230,38)(201.08)(157.60)(129.24)(101.65)(74.57)(49,52)(24.76		
ROUTED TO	7	4.38	1		8115.	703%.	5540.	4494.	3407.	2482.	1319.	••		
	(11.34)	((272,98)(229.78)	200.65)(156.89)(127.25)(96.46)(70.28)	(45. 85)(20,424		
NJUIED TO	8	4.38	1	9643.	8119.	7091.	5524.	4513.	3405.	2480.	1618.	797		
	(11.34)	•	(273.07)(229.87)	200.80)(156.43)(127.79)(96.42)	70.21)	(45.82)(22.42		
HYDROGRAPH A	T 9	2.75	1	5485.	4662+	4114.	3291.	2743.	2194.	1646.	1097.			
	(7.12)	4	(155.32)(132.03)	(114.49)(93,19)(77.66)(62.13)	46.60)	(31.06)(: :		

	•	11.34)	ŧ	2/3.85)(230.38)(201.08)(157.60)(129.24)(101.65)(74.57)(4. it.
COTED TO	7	4. 18	1	964).	F11'0	7086.	5540.	4494.	3407.	. 40.1	1519.	772.
V 3 / 2 / 3	(11.34)	-	272.98)(200.65)(96.46)(70,28)(45,800	22,42)
10	в	4.38	1	9643.	6113.	7071.	5514,	4513.	1405.	2463.	1617.	122.
	(11.34)	(273.07)(200.80)(96.42)(70.21)(45,8210	22,42)
DEPROGRAPH AT	9	2.75	1	5485.	4602.	4114.	3291.	27437	2194.	1640.	1592.	[40,
	(7.12)	(155.32)(132.03)(116.49)(93.19)(77.66)(62.13)(40.00)(31.00)(15.53)
2 COMBINED	10	7.13	1	15109.	12763.	11190.	8804.	255.	5569.	4103.	,	1308.
	(18.47)	(427.83)(361.41)(316.87)(249.28)(205.45)(157.70)	115.18)(76.4511	37.61)
SOUTED TO	11	7.13	1	15090.	12.3%	11155.	8801.	7234.	5560.	40-1.	2891	1323.
	(18.47)	(427.31)(360.61)(316.11)(249.22)(204.841(157.44) (115.85)(76.2010	37.47)
ROUTED TO	12	7.13	1	15034.	12744.	11179.	3831.	7222.	5555.	4091.	2537.	13.0.
	(18.47)	(427.13)(360.86)(316.56)(249.78)(204.52)(157.33)(115.85)(76.15)(37.37)
- DUTED TO	13	7.13	1	15088.	12745.	11156.	8823.	213.	55034	4083.	36747	1329.
	{	18.47)	(427,24)(360.89)(316.18)(249,85)(204,25)(157,24)(115.75)(76.00)(37.38)
HYDROGRAPH AT	14	.40	1	1225.	1041.	918.	735.	612.	490.	387.	24%	122.
	(1.04)	(34.68)(29.48)(26.01)(20.81)(17.34)(13.87)(10.40)(6.94)(3.47)
NUUTED TO	15	.40	1	1009.	817.	702.	548.	4.50.	325.	223.	12%	24.
	(1.04)	(28.58)(23.13)(19.87)(15.51)(12.44)(9.20)(6.32)(3.60)(•67)
SOUTED TO	16	.40	1	1008.	817.	703.	548.	440.	325.	2.23.	12%	.`4.
	(1.04)	(28.55)(23.13)(19.90)(15.52)(12.45)(9.20)(6.32)(3.60)((67)
HYDROGRAPH AT	17	.98	1	2296.	1952.	1722.	1378.	1148.	918.	.683	459.	230.
	(2.54)	(65.02)(55,26)(48.76)(39.01)(32.51)(26.01)(19.51)(13.00)(6.50)
2 COMBINED	18	1.38	1	3304.	2744.	2409.	1905.	1556.	1196.	875.	543.	746.
	(3.57)	(93.54)(77.7[)(68.23)(53.94)(44.05)(33.88)(24.79)(15.36)(5.97)
ROUTED TO	19	1.38	1	2992.	2497.	2174.	1688.	1351.	1002.	652.	297.	110.
	(3.57)	(84.73)(70.70)(61.57)(47.80)(38,26)(28.39)(18.47)(8.431(3.36)
ROUTED TO	20	1.38	1	2004.	2494.	2173.	1686.	1351	1002.	653.	299,	117.
	(3.57)	(84.79)(70.63)(61.52)(47.73)(38.26)(28.37)(18.49)(8.461(3.36)
AYDROGRAPH AT	21	2.62	1	6152.	5729.	1514.	3691.	3076.	2461.	1845.	1230.	615.
	(6.79)	(174.21)(148.08)(130,66)(104.53)(B7.11)(69.69)(52.26)(34,84)(17,42)
3 COMBINED	22	11.13	1	23807.	200751	17590.	13835.	11263.	8625.	6187.	3925.	1942.
	(28.83)	(674.13)(568,45)(477.81)(391.76)(318.94)(244,23)(175.25)(112.86)(54.99)
NUTED TO	23	11.13	1		1/8/3.	1 1414,	13628.	11085.	8537.	6113.	3841.	1832
	(28.83)	(668.39)(563.44)(493.10)(385.91)(313.91)(241.74)(1/3.10)(108.73)(51.87)

SUMMARY OF DAM SAFETY ANALYSIS

LAN 1		INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	ELEVATION	1307.08	1307.00	1308.00
	STORAGE	3703.	3692.	3 833.
	OUTELON	2.	٥.	27.

			Sold Filt Hart 13					
PLAN 1	1	ELEVATION STORAGE OUTFLOW	1307	. VALUE 7.08 703. 2.	SPILLWAY FRE 130 1.00 3692. 0.		0F DAM 308.00 3833. 27.	′/
	RATIO OF PMF	HANTHUH RESERVUIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	HAXIHUH STORAGE AC-FT	HAXIMUM OUTFLOW CFS	DUKATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	1.00	1309.92	1,92	4112.	1210			
	•85	1309.63	1,63	4067.	1219.	20.50	42.00	0.00
	.75	1309.43	1.43	4007.	988.	19.50	42.00	0.00
	.60	1309.13	1.13	3996.	831.	18.75	42.25	0.00
	•50	1308.88	.88		583.	17.50	42.50	0.00
	.40	1308.61	.61	3960.	426.	16.00	42,50	0.00
	•30	1308.32	+32	3920,	302.	14.25	42.75	0.00
	.20	1308.00	.00	3879. 3834.	173.	12.00	43.00	0.00
	.10	1307.52	0.00		29.	1.75	44.50	0.00
		100,102	V.00	3766.	14.	0.00	44.50	0.00
			PI	LAN 1	STATION	3		
			RATIO	HAXIHUH FLOW+CFS		TIME HOURS		
			1.00	1215.	1291.9	42.00		
			•85	985.	1281.7	42.25		
			•75	828.	1281.5	42,25		
			.60	581.	1291.3	42.50		
			.50	423.	128978	42.75		
			.40	299.	1200.3	43.00		
			.30	171.	1779.8	43.25		
			.20 .10	29. 14.	1279.1 1279.1	44.75 44.7 5		
			FL	AN 1	STATION	4		
			RATIO	HAXINEN FLOW/CFS	MAXIMUM STAGE+FT	TTHE Hours		
			1.00	1211.	1750.1	42,25		
			.85	o .g.	1247.5	42,50		
			.75	8.1.	1248.9	42.50		
			03.	574.	1748.1	42.75		
			.50	420.	1747.6	43.00		
			.40	296.	124772	43,25		
			.30	165.	1248.2	43.75		
			.20	28.	1244.4	45.75		
			.10	14,	1244.2	45.50		
			SUN	MART UF PAM	SAFETY ANALY	SIS		

		.85 .75	9/8. 821. 574.	1747.5 1748.9 1248.1	42.25 42.50 42.50 42.75		
		.75 .60	821.	1248.9	42.50		
		.60					
			0.71		4		
		.50					
			420,	1247.6	43.00		
		.40	296.	1247.2	43.25		
		.30	165.	1246.2	43.75		
		.20	28.	1244.4	45.25		
		.10	14.	1244.2	45.50		
		SUM		SAFETY ANAL			
1		INTITAL	DALIE C	OTHERN PEEC	TOP TO	OE BAM	
	ELEUATION						
					12		
	OUTFLOW		1.	0.		3658.	
RATIO	HAXIMUM	HAXIHUH	MAXIMUM	HOMIZAM	DURATION	TIME OF	TIME OF
OF	RESERVOIR	UEPTH	STORAGE	OUTFLOW	OVER TOP	MAX DUTFLOW	FAILURE
PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	RAUCH	HOURS
1.00	1279.09	1.50	AAA	Q s A D	5 50	A 1 E A	0.00
							0.00
							0.00
					4.00		0.00
.60	1239.14	•64	403.	5540.	3.00	41.50	0.00
.50	1237.80	.30	370.	4494.	2.00	41.75	0.00
.40			358.				0.00
							0.00
							0.00
.10	1233+26	0.00	228+	792+	0.00	42.25	0.00
		P'	LAN 1	STATION	8		
		,			•		
			#iJHI#A	HOMIZAH I	TIME		
		RATIO	FLOW,CFS	STAGE + FT	HOURS		
		1.00	9433.	1114.2	41.50		
		•25	4713.				
		.40	3405.	1713.1	42.00		
		50	COUNTY OF THE	III SHIFLI HAH	F1212		
1	(1 CHATTON						
					1		
				6			
	OUTFLOW		0.	6.		5505.	
RATIO	HOMIZAN	MUHIZAM	PHH JAH	MAX1HI'H	NOTTARING	TIME OF	TIME OF
Ŋr	RESERVIME	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE
	0F PMF 1.00 .85 .75 .60 .50 .40 .30 .20 .10	ELEVATION STURAGE OUTFLOW RATIO MAXIMUM OF RESERVOIR PMF W.S.ELEV 1.00 1239.08 .85 1238.77 .75 1238.53 .60 1238.14 .50 1237.80 .40 1236.98 .30 1235.84 .20 1234.64 .10 1233.26	ELEVATION 1231. STURAGE 015 OUTFLOW 15 RATIO MAXIMUM MAXIMUM OF RESERVOIR DEPTH PMF W.S.ELEV OVER DAM 1.00 1239.08 1.58 .85 1238.77 1.27 .75 1238.53 1.03 .60 1238.44 .64 .50 1237.80 .30 .40 1235.84 0.00 .30 1235.84 0.00 .20 1234.64 0.00 .10 1233.26 0.00 PI RATIO RATIO 1.00 STORAGE OUTFLOW INITIAL	ELEVATION 1231.02 STURAGE 159. OUTFLOW 1. RATIO HAXIMUM HAXIMUM MAXIMUM OF RESERVOIR DEPTH STURAGE PMF W.S.ELEV OVER DAM AC-FT 1.00 1239.08 1.58 44085 1238.77 1.27 42775 1238.53 1.03 41860 1239.14 .64 40350 1237.60 .30 37040 1235.84 0.00 30830 1235.84 0.00 30830 1235.84 0.00 31620 1234.64 0.00 27410 1233.26 0.00 228. PLAN 1 MAXIMUM RATIO FLOW.CFS 1.00 964355 611855 709160 502420 401340 340530 246020 161810 792. SUMMARY OF DA 1	RATIO HAXIMUM HAXIMU	RATIO	RATIO 1231.02 1231.00 1237.50 1237.50 1508.60 159. 159. 159. 159. 378. 378. 3858.

RATIO

1.00

FLOWICES

1211. 978.

STACE

12 + 1 1247 - 5

HOURS

42.25 42.50

,' a	4513,	17.13.49	41.75
• 40	3415+	1713.1	42.00
.30	2480.	1212.5	42.00
•20	1618.	1211.3	42.00
.10	792.	1210.2	42.25
SUMMARY	OF DAM	SAFETY ANALYS	IS

PLAN	1		INITIAL	VALUE	SPILLWAY OR	FST TOP	OF DAM	
		ELEVATION	1169		1170.00		175.50	
		STORAGE		61.	62.	•	147,	
		OUTFLOW		0.	0.		5505.	
	RATIO	MAXIMUM	HUHIXAH	HUMIXAM	HAXIMUN	DURATION	TIME OF	TIME OF
	OF	RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE
	PHF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
	1.00	1178.13	2.63	202.	15090.	6.50	41.50	0.00
	•85	1177.62	2.12	170.	12735.	5.50	41.50	0.00
	•75	1177.25	1.75	182.	11163.	5.00	41.75	0.00
	•60	1176.65	1.15	170.	8801.	3.75	41.50	0.00
	.50	1176.18	•68	160.	7234.	3.00	41.75	0.00
	.40	1175.53	.03	148.	5560.	•50	42.00	0.00
	.30	1174.51	0.00	129.	4071.	0.00	42.00	0.00
	•20	1173.41	0.00	110.	2691.	0.00	42.00	0.00
	.10	1172.13	0.00	90.	1323.	0.00	42.25	0.00

PLA	AN 1	STATION	12
RATIO	MAXIMUM FLOW+CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	15084.	1156.5	41.75
. 85	12744.	1155.8	41.75
•75	11179.	1155.3	41.75
•60	8821.	1154.6	41.75
•50	7222,	1153.B	42.00
.40	5554.	1153.0	42.25
•30	4071.	1152.2	42.25
.20	2687.	1151.3	42.25
.10	1320.	1149.8	42.50

PL	AN 1	STATION	13
RATIO	MAXIMUM	MAKIMUM	TIME
	FLOW,CFS	STAGE+FT	HOURS
1.00	15008.	1087.4	41.75
.85	12745.	1093.8	41.75
.75	11166.	1088.4	41.75
.60	9023.	1087.6	41.75
.50	7213.	1087.4	42.00
.40	5053.	1086.7	42.25
.30	4008.	1085.8	42.25
.20	2684.	1085.0	42.25
		M SAFETY ANAI	

. **.** 1-10. 147 •30 4088. 1095.8 42.25 .20 2684. 10/35.0 42.25 .10 1320. 1084.2 42.50 SUMMARY OF DAM SAFETY ANALYSIS

10/31

LAN	1	ELEVATION Storage Outflow	INITIAL 1265. 35	97	SPILLWAY CRES 1266.00 353. 0.		OF PAM 67.00 392. 27.	
	RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIHUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT		DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	1.00	1269.25	2.25	487.	1009.	16.00	41.25	0.00
	•85	1269.04	2.04	478.	817.	15.00	41.50	0.00
	•75	1268.84	1.84	467.	702.	14.25	41.75	0.00
	.60	1268.53	1.53	456.	548.	13.25	41.75	0.00
	•50	1268.31	1.31	446.	437.	12.00	41.75	0.00
	.40	1269.07	1.07	436.	325.	11.00	42.25	0.00
	.30	1267.75	.75	423.	223.	9.50	42,50	0.00
	.20	1267.38	,38	408.	127.	7.25	42.75	0.00
	•10	1266.88	0.00	388.	24.	0.00	44.25	0.00
			FI	LAN 1	STATION	16		
			RATIO	MAXIMUR FLOW+CFS		TIME HOURS		
			1.00	1008	1204.0	41.50		
			•85	817				
			.75	703				
			.60	548				
			.50	440				
			.40	325		42,25		
			.30	223				
			,20	127				
			.10	24	. 1200.2	44.25		
			SU	IHHARY OF D	AK SAFETY ANA	LYSIS		
PLAN	1		INITIAL 1176		SPILLWAY CRE		OF DAM 178.00	
		STORAGE OUTFLOW	1	92. 0.	192.		334. 313.	
	RAIIO	म <i>ेर्-१स</i> तम्	нгитури	ичхтийн	HUNTER	DURATION	TIME UF	TIHE (
	<i>Gt</i>	RESERVOIR	DEPTH	STURAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILU
	P.HF	W.S.ELEV	OVER DAM	AC-FT	CF3	HOUKS	HUURS	HOUR
	1.09	1177.91	1.91	526.	2972.	11.50	42,25	0.0
	•85	1179.65	1.65	497.	2497.	11.00	42,25	0.0
	tr	4473 40	1 10	471	24.24	10 50	47.75	Λ Λ

.75

.59

.50

.40

.30

1179.48

1179.19

1178.98

1178.73

1178.43

1.48

1.19

.98

.73

, 43

477.

417,

425.

400.

373.

2174.

1,300

1351.

1002.

652.

10.50

9.25

8.25

7.25

5,50

42.25

42,50

42,75

43.00

43.50

0.00

0.00

0.00

0.00

0.00

	OUTFLOW		0.	0.		313.	11/31
RATIO QF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIHUM DEPTH OVER DAN	MAXIMUM STORAGE AC-FT	HAXIHUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1179.91	1.91	526.	2992.	11.50	42.25	0.00
•85	1179.65	1.65	497.	2497.	11.00	42.25	0.00
.75	1179.48	1.48	477.	2174.	10.50	42.25	0.00
.60	1179.19	1.17	447.	1680.	9.25	42.50	0.00
•50	1178.98	.98	425.	1351.	8.25	42.75	0.00
.40	1178.73	.73	400.	1002.	7.25	43.00	0.00
.30	1178.43	.43	373.	652.	5.50	43.50	0.00
.20	1177.94	0.00	329.	299.	0.00	44.50	0.00
•10	1177.05	0.00	260.	119.	0.00	44.50	0.00
		ĺ	PLAN 1	STATION	20		
			HUHIXAH	HUNIXAH	TIME		
		RATIO	FLOW+CFS	STAGE, FT	HOURS		
		1.00	2994.	1084.3	42.25		
		.85	2494,	1083.9	42.25		
		, 75	21/3.	1083.6	42.50		
		.60	1686.	1083.2	42.50		
		.50	1351.	1082.7			
		.40	1002.	1082.1	43.00		
		.30	653.	1081.6			
		.20		1080.7			
		.10		1079.7			
				M SAFETY ANA			
•		7.11.7.7.A.) 11A1 11E	EDILLULY CDE	CT TOD	75 DAY	
1	ELEVATION			SPILLWAY CRE		OF DAM	
	STORAGE		1.00	1040,90	1	044.90	
	OUTFLOW		197. - 26.	194.		433,	
	0011 20#		201	0.		3322.	
RATIO	нахінин	MUHIXAM	MUNIXAN	HIJHIXAN	DURATION	TIME OF	TIME OF
(NF	RESERVOIR	DEPTH	STORAGE	DUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE
PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
1.00	1050.93	6.03	897.	23604.	11.25	42.00	0.00
.85	1050.12	5,22	827.	19898.	10.50	42.00	0.00
, 75	1049.54	4.64	778.	17414.	10.00	42.00	0.00
.60	1048.60	3.70	702.	13628.	9.00	42.25	0.00
•50	1047.92	3.02	649,	11085.	7.75	42.25	0.00
, 40	1047.16	2,74	591.	8537.	6.75	42.50	0.00
. 30	1046.30	1.40	5.29.	6113.	5.25	42.75	0.00
.20	1045.24	,34	456.	3840.	2.25	42,75	0.00
.10	1043.59	0.00	349.	1832.	0.00	43.00	0.00
TERED.							

EDI ENCOUNTERED.

1

PLAN

```
bhit berrif & Kaltie
                      JUL 1 17/8
 LAST MODIFICATION 26 FEB 79
**********************
                   A1
                                     LAKE LATTINDER 1 4444 DINGHANS CREEK
   2
                   A2
                                     DELAWARE THE .. PINE COUNTY, PA.
   3
                   A3
                                     NDI # PA-00405
                                                        PA DER # 52-78
                        300
                                         15
                                                                  0
                                              0
                   P1
                         5
                                  1
                                         1
                   J
                   11
                        .22
                                     INFLOW HYDROGRAPH - SILVER LAKE SUBAREA
                   N1
                         1
   10
                                        .64
                                                    11.13
                                                                                          1
   11
                               21.9
                                        111
                                                      133
                                                123
                                                                142
 . 12
                                                                                .05
   13
                        .57
                                • 45
   14
                       -1.5
                               -.05
                                          2
   15
                         1
                                     RESERVOIR ROUTING - THRU SILVER LAKE
   17
                                                        1
                                                 1
   16
                   YI
                                                                       3704
                                                                                 -1
   19
                       1307
                               1308
                                       1309
                                               1310
                                                       1311
   20
                                 27
                    Y5
                          0
                                        481
                                               1286
                                                       2320
                    $4
                          0
                               140.2
                                        175
                    $5
                       1228
                               1307
                                       1320
                       1307
                       1309
                    $[1
   26
                                     ROUTING THRU REACH 2 - 3
                    ٨1
   27
                    Y
                                                1
                                                         1
   28
                    Y1
                          1
   29
                                               1279
                                                       1320
                    46
                          • 1
                                •08
                                         • 1
                                                               2400
                                                                      .0117
   30
                    ¥7
                               1320
                          0
                                        350
                                                1300
                                                        890
                                                               1230
                                                                        910
                                                                               1279
                                                                                        920
                                                                                               1279
                    77
                                1280
   31
                         980
                                       1650
                                                       1980
                                                1300
                                                               1320
   32
                    ٨
   33
                    11
                                      ROUTING THRU REACH 3 - 4
   14
                                                1
                                                        1
                    11
                          1
   36
                    ¥6
                          .1
                                • 08
                                               1244
                                                       1300
                                                               4200
                                                                      .0093
                                         . 1
   37
                    Y7
                          0
                               1280
                                         10
                                                1280
                                                        370
                                                               1250
                                                                        440
                                                                               1244
                                                                                               1244
   38
                    Y7
                                               1280
                         600
                               1260
                                                       1050
                                                               1300
                                         760
   39
   40
                                      INFLOW HYDROGRAPH - MARCEL LAKE SUBAREA
   41
                                        3.74
                                                      11.13
                                21.9
                                        111
                                                123
                                                        133
                                                                142
                                                                                .05
                        1.52
                                .45
                        -1.5
                                -.05
                           2
                    11
                                      COMPINE HYDROGRAPHS AT MARCEL LAKE
                    ٨
                                      RESERVOIR ROUTING - THRU MARCEL LAKE
                    ١1
   50
                                                  1 1
   51
                    Yſ
                                                                        159
   5.1
                                29.5
                                        41.9
   53
                    1E1214.9
                                1231
                                        1240
   54
                    ## 1231
                                 60
                                        3.88
                                                1.5
                    $01237.5
                                 2.7
                                        1.5
                                                800
                         1
   57
                    1.1
                                      ROUTING THRU REACH 7 - 8
```

1 1

Company to the Charles Mile and

```
40(237)
                              2.
                      1
                                                                                              13/31
  57
                  K1
                                   RUUTING TUST REACH 7 - 8
  58
                  Υ
                                             1
  59
                  Y6
                  Yó
                       .1
                              .09
                                      .1
                                            1207
                                                    1.760
                                                            700
                                                                  .0138
  61
                        0
                             1260
                  Y7
                                      200
                                            1240
                                                    400
                                                           1220
                                                                    720
                                                                          1207
                                                                                   730
                                                                                         1207
  62
                  ¥7
                       840
                             1220
                                     1050
                                            1240
                                                    1200
                                                           1260
  63
                  K
                              1
  64
                  M
                                   INFLOW HYDROGRAPH - CAMP MASSAU LAKE SUBAREA
   65
                  H
                                     2.75
                                                  11.13
  66
                  P
                             21.9
                                     111
                                             123
                                                  133
   67
                                                                            .05
   68
                  W 1.95
                              .45
   69
                  X
                     -1.5
                              -.05
                                        2
   70
                              10
                       2
 : 71
                                   COMBINE HYDROGRAPHS AT CAMP MASSAD LAKE
                  K1
   72
                              11
   73
                                   RESERVOIR ROUTING - THRU CAMP MASSAD LAKE
                  K1
   74
                  Υ
                                              1 1
   75
                  Y1
                         1
                                                                 61.4
   76
                                     25.6
                  $A
                         0
                              12.3
   77
                  SE 1155
                              1170
                                     1190
   78
                  $$ 1170
                              110
                                     3.88
                                             1.5
   79
                  $D1175.5
                               2.7
                                    1.5
                                              450
   60
                      1
                               12
   81
                  1.1
                                   ROUTING THRU REACH 11 - 12
   83
                  Υ
                                               1
                                                     1
                  Υí
                       1
                   Y6
                        .1
                              .08
                                      • 1
                                             1146
                                                    1200
                                                            2000
                                                                    .01
                   Y7
                         0
                              1200
                                      100
                                             1180
                                                    1030
                                                            1160
                                                                   1220
                                                                           1146
                                                                                   1230
                                                                                          1146
   86
                   Y7
                      1670
                              1160
                                     1880
                                             1180
                                                    2000
                                                            1200
   87
                  K
                         1
                              13
   88
                   k1
                                   ROUTING THRU REACH 12 - 13
   83
                   Υ
                                               1
                                                    1
   90
                   Y1
                         1
   71
                       .09
                   16
                               .05
                                      .09
                                             1681
                                                    1140
                                                            3100
                                                                    .021
   92
                   ¥7
                         0
                              1140
                                      200
                                             1120
                                                     350
                                                            1100
                                                                                          1061
                                                                    520
                                                                           1081
   93
                   Y7 1110
                              1100
                                     1500
                                             1120
                                                    1700
   74
                               14
   9.
                              1
                                    INFLOW HYDROGRAPH - NICHERCRONN POND SUBAREA
                   M
                   H
                        1
                                      . 4
                                                   11.13
                                                                                     1
   97
                              21.9
                                       111
                                              123
                                                   133
                                                             142
                   Ī
                                                                      1
                                                                            .05
   οņ
                      .88
                               . 45
  100
                      -1.5
                              -.05
                   χ
                                        2
1 101
                       1
                               15
                   ٨
  102
                                    RESERVOIR ROUTING - THRU NICHERCRONA FOND
                   N1
  103
                                               1
                                                       1
  104
                   Y1
                                                                     353
                                                                             -1
                       1
  105
                              1267
                                      1269
                   Y4 1266
                                             1269
                                                    1270
                                                            1271
  105
                   Y5
                       0
                              27
                                      290
                                              779
                                                    1697
                                39
  107
                   $4
                       0
                                      69.2
                   $£1239.1
  108
                              1266
                                      1280
  107
                   $$ 1766
  110
                   3D 1267
  111
                   K.
                       1
  112
                   M
                                    ROUTING THRU REACH 15 - 16
  113
                   Y
                                               1
                                                      1
  114
                   Y ]
                         1
  115
                               • () P
                                             1200
                   16
                         •1
                                                     1260
                                                            1200
                                       - 1
                                                                    .055
                   77
   114
                         - 9
                              1,140
                                       100
                                             1240
                                                      400
                                                            1220
                                                                     470
                                                                           1200
                                                                                    490
                                                                                          1200
```

```
(*)
                                            1211
                                                           1 ...
                                                                   3.0
                                                                          1760
                                                                                        100
  117
                  1/
                       5/5
                             1220
                                      140
                                            1,346
                                                    900
                                                           1260
  118
                              17
  119
                                   INFLOW HYDROGRAPH - WOODPECKER LAKE SUBAREA
                  M
  120
                       1
                  H
                                     ,93
                                                 11.13
  121
                             21.9
                                     111
                                            123
                                                  133
                                                           142
  122
                                                                           .05
  123
                     1.49
                              . 45
  124
                  X
                      -1.5
                             -.05
                                       2 '
  125
                       2
                              18
  126
                  K1
                                   COMBINE HYDROGRAPHS AT WOODPECKER LAKE
  127
                              19
                  K
  128
                  M
                                   RESERVOIR ROUTING - THRU WOODFECKER LAKE
  129
                  Y
                                   1 1
  130
                  Y1
                        1
                                                                 192.3
                                   117.9
 131
                         0
                             57.7
                  SA
  132
                  ∮E
                      1166
                             1176
                                     1180
  133
                  11
                      1176
                              41
                                     2.7
                                             1.5
  134
                  $0
                     1178
                              2.7
                                     1.5
                                             300
  135
                  ħ
                      1
                               20
  136
                                   ROUTING THRU REACH 19 - 20
                  M
  137
                  Υ
                                            1
                                                     1
  138
                  Y1
  139
                  Y6
                       . 1
                              .08
                                      .1
                                            1079
                                                   1120
                                                           2700
                                                                    .05
  140
                  Y7
                        0
                             1120
                                      110
                                            1100
                                                    220
                                                           1080
                                                                   230
                                                                          1079
                                                                                         1079
  141
                  ¥7
                       250
                             1080
                                      550
                                            1100
                                                    660
                                                           1120
  142
                              21
                  ĸ
                                                                     1
  145
                  M1
                              1
                                   INFLOW HYDROGRAPH - LANE LATTIMORE SUBAREA
  144
                       1
                   M
                                     2.62
                                             11.13
                                                                                    1
  145
                  P
                             21.9
                                     111
                                             123 133
                                                            142
  146
                   T
                                                                     1
                                                                           .05
  147
                              . 45
                   W 1.46
  149
                   X
                     -1.5
                             -.05
  149
                       3
                              22
  150
                  N1
                                   COMBINE HYDROGRAPHS AT LAKE LATTIHORE
                      1
1 151
                               23
                   ٨
  152
                   N1
                                   RESERVOIR ROUTING - THRU LAKE LATTIMORE
  153
                   Y
                                              1 1
  154
                   ¥1
                       1
                                                                   199
                                                                           -1
  155
                   Y41040.7 1041.5
                                     1042 1042.5
                                                    1043
                                                           1044 1044.9 1045.5
                                                                                 1046
                                                                                         1047
  155
                   Y4 1049
                              1049
                                     1050
                                            1051
  157
                   Y5 0
                              154
                                     445
                                            806
                                                    1232
                                                           2248
                                                                   3322
                                                                          4232
                                                                                 5292
                                                                                         8017
  158
                   YS 11339
                             15137
                                    19349
                                            23937
  159
                   !A 0
                              53.8
                                    126.9
  150
                   $51029.9
                              1041
                                     1060
  161
                   4$1040.9
  162
                   3111044.9
  163
                   $8
                        50
                                     1037
                                              .25 1040.9 1045.4
                                1
  164
                   39
                        50
                                     1037
                                              .5 1040.9 1045.4
                                1
  165
                   $ [4
                        50
                                     1037
                                i
                                               1 1040.9 1045.4
                        50
  165
                   $8
                                     1037
                                               2 1040.9 1095.4
                                1
  167
                   ١
                         1
                                24
  168
                   11
                                   ROUTING THRU REACH 23 - 24
  169
                                              1
                                                      1
  170
                   11
                         i
  171
                   Y6
                         .1
                               .09
                                             976
                                                    1020
                                                           2400
                                                                  .0225
                                       · 1
  172
                   Y 7
                         0
                              1000
                                       10
                                             1000
                                                    100
                                                           980
                                                                  180
                                                                           976
                                                                                   190
                                                                                          976
  173
                               980
                   Y7
                        280
                                      350
                                             1000
                                                     510
                                                           1020
  174
                         1
  175
                   1.1
                                    ROUTING THRU REACH 24 - 25
  1/6
                                             1 1
  177
                   Y1
                       ı
```

1 ...

- 0

```
Secretal March 1964 State
                                                         . ,14
                    1,1
                                                    1
                    Y1
  177
                           1
                                                                          .055
                                                          820
                                                                  3700
                                  .09
                                           .1
                                                  774
  178
                    16
                           .1
                                                                                                    774
                                                                           240
                                                                                   774
                                                                                            250
                                                                   780
                                  820
                                           70
                                                  800
                                                           160
                    Y7
                           0
  179
                                                  800
                                                           420
                                                                   820
                                  780
                                          380
                    Y7
                          300
  180
                                                                             1
                                   26
  181
                    ĸ
                           1
                                       ROUTING THRU REACH 25 - 26
  182
                    ĸŧ
                                                    1
                                                             1
  183
                     Y
                           1
  184
                     Y1
                                                                          .0187
                                                   744
                                                           800
                                                                  1600
                                  .09
                                           .1
                     46
                           . 1
  185
                                                                                                    744
                                                                            275
                                                                                    744
                                                                                            285
                     Y7
                           0
                                  800
                                          100
                                                   780
                                                           180
                                                                   760
  186
                     Y7
                          450
                                  760
                                          530
                                                   780
                                                           620
                                                                   800
  187
                           99
                     K
  188
                                PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS
1
                                         RUNOFF HYDROGRAPH AT
                                                                         2
                                        FOUTE HYDROGRAPH TO
                                                                         3
                                         ROUTE HYDROGRAPH TO
                                         ROUTE HYDROGRAPH TO
                                                                         5
                                         RUNOFF HYDROGRAPH AT
                                         COMBINE 2 HYDROGRAPHS AT
                                                                         7
                                         ROUTE HYDROGRAPH TO
                                                                         8
                                         ROUTE HYDROGRAPH TO
                                                                         9
                                         RUNOFF HYDROGRAPH AT
                                         COMBINE 2 HYDROGRAPHS AT
                                                                        10
                                         ROUTE HYDROGRAPH TO
                                                                        11
                                                                        12
                                         ROUTE HYDROGRAPH TO
                                                                        13
                                         ROUTE HYDROGRAPH TO
                                                                        14
                                         RUNDER HYDROGRAPH AT
                                                                        15
                                         ROUTE HYDROGRAPH TO
                                         ROUTE HYDROGRAPH TO
                                                                         16
                                                                         17
                                         RUNCEF HYDROGRAPH AT
                                                                         18
                                         COMBINE 2 HYDROGRAPHS AT
                                                                         17
                                          ROUTE HYDROGRAPH TO
                                                                         20
                                          ROUTE HYDROGRAPH TO
                                                                         21
                                          RUNOFF HYDROGRAPH AT
                                                                         22
                                          COMPINE 3 HYDROGRAPHS AT
                                                                         23
                                          ROUTE HYDROGRAPH TO
                                          ROUTE HYDROGRAPH TO
                                                                         24
                                          ROUTE HYDROGRAPH TO
                                                                         25
                                          ROUTE HYDROGRAPH TO
                                                                         26
                                          END OF NETWORK
  **********************
  FLOOD HYDROWSAL'S FACHAGE (HEC-1)
```

FLOOD HYPROGRACT FACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1978
LAST MULTIFICATION 25 FEE 79

MO

RUN DATE: 60/06/11. TIME: 06:03:37.

LANE LATTIMORE DAM **** DINGMANS CREEK DELAWARE TWP., PINE COUNTY, PA.
NDI # PA-00406 PA DER # 52-78

JOR SPECIFICATION
NHR NMIN IDAY ING IMIN METRO IPLI IPRI NSTAN

)		********		******	***	********	*******	********
•	1						•	•
•		PEAK FLOW A	vi storac	FLOWS IN	CURIC FEET	UMMARY FOR MULTIF FER SECOND (CUB) RE MILES (SUBURNE	LE PLAN-RATIO ECONOM C HETERS FER SECOND) KILOMETERS)	IC COMPUTATIONS
)						RATIOS A	APPLIED TO FLOWS	
)	OPERATION	STATION	AREA	PLAN	RATIO 1 .22			
)	HYDROGRAPH AT	1 (.64 1.66)	1 (537. 15.22)(
)				2 (3 (537. 15.22)(537. 15.22)(
)				4	537. 15.22)(
)	ROUTED TO	2	.64 1.66)	1 (2	61. 1.72)(61.			
)				3 (1,72)(61, 1,72)(
•				4	61. 1.72)(
)	ROUTED TO	3 (.64 1.66)	1 (2	60. 1.70)(60.			
)				3	1.70)(60. 1.70)(
)				4	60. 1.70)(
)	ROUTED TO	4 (+64 1+66)	1 (2	58. 1.65)(58.			
)				3 (1.65)(58. 1.65)(
)				4 (58. 1.65)(
)	HYDROGRAFH A	T 5 (3.74 9.69)	1 (2	1905. 53.94)(1905.			
•				3 (53.94)(1905. 53.94)(
>				4	1905. 53.94)(

•				3 (1905. 53.94)(
)				4	1905.
				(53.94)(
•	2 COMPINED	6 (4.38 11.34)	1 (1924.
		•	111347	2	54.47)(1924.
)				(54.47)(
				3 (1924. 54.47)(
J				4	1924.
				(54.47)(
)	ROUTED TO	7	4.38 11.34)	1,	1786.
			11.34)	(2	50.56)(1786.
)				(50.56)(
				3 (1786. 50.56)(
)				4	1786.
•				(50.56)(
)	ROUTED TO	8	4.38	1	1785.
		(11.34)	(2	50.54)(1785.
)				(50.54)(
,				3	1785.
				4	50.54)(1785.
)					50,54)(
)	HYDROGRAPH AT	9	2.75	1	1207.
,		(7.12)	(34.17)(
)				2 (1207. 34.17)(
•				3	1207.
				4	34,17)(1207.
)				(34.17)(
	2 COMPINED	10	7.13	1	2975.
,		(18.47)	(84,24)(
				2 (2975. 84.24)(
)				3	2975.
				(84.24)(
)				4 (2975. 84.24)(
	ROUTED TO	11	7.13	1	2967.
)		(19.47)	• (84.01)(
				2	2967.
)				3	84.01)(2967.
				(84.01)(
)				4 (2967. 84.01)(
)	ROUTED TO	12	7,13 18,47)	1 (2964. 83.93)(
		•	,,	•	031 777

)				4 (2967. 84.01)(
•	ROUTED TO	12	7.13 18.47)	1 (2	2964. 83.93)(2964.
•				3 (83.93)(2964. 83.93)(
•				4	2964. 83.93)(
)	ROUTED TO	13 (7.13 18.47)	1 (2	2959. 83.78)(2959.
•				3 (83.78)(2959. 83.78)(
)				4 (2959. 83. 78)(
)	HYDROGRAPH AT	14	.40 1.04)	1 (2 (269. 7.63)(269. 7.63)(
)				3 (4 (269. 7.63)(269. 7.63)(
)	ROUTED TO	15	.40 1.04)	1 (2	147. 4.16)(147.
)				(3 (4	4.16)(147. 4.16)(147. 4.16)(
)	ROUTED TO	16	.40 1.04)	1 (2	147. 4.16)(147. 4.16)(
)				3 (4 (147. 4.16)(147. 4.16)(
)	HYDROGRAFH AT	17	.98 2.54)	1 (2 (505. 14.30)(505. 14.30)(
)				3 (4 (505. 14.30)(505. 14.30)(
)	2 COMPINED	18 (1.38 3.57)	1 (2 (612. 17.33)(612. 17.33)(
-				-	

)	2 COMPINED .	18	1.38 3.57)	1	612. 17.33)(
•				2 (3	612. 17.33)(612.
•				(4 (17.33)(612. 17.33)(
)	ROUTED TO	19	1.39 3.57)	1 (355. 10.05)(
•				2 (3	355. 10.05)(355.
)				4	10.05)(355. 10.05)(
)	ROUTED TO	20	1.38 3.57)	1 (354. 10.03)(
)				2 (3	354. 10.03)(354.
)				(4	10.03)(354.
•				(10.03)(
)	HYDROGRAFH AT	21	2.62 6.79)	1 (1354. 38.33)(
)				2 (1354. 39.33)(
				3 (1354. 38.33)(
)				4 (1354. 39.33)(
)	3 COMPINED	22	11.13 28.83)	1 (4399. 124.57)(
`				2	4399. 124.57)(
)				3 (4399. 124.57)(
)				4 (4399. 124.57)(
)	ROUTED TO	23	11.13	i	7478.
		(28.83)	. (211.75)(6853.
)				3	194.05)(5954.
>				4	168.59)(4.53. 120.43)(
)	ROUTED TO	24	11.13	1	6872.
•		(28,83)	2	194.60)(6481.
)				3	183,52)(5864,
				(166.05)(

)			4	4253. 100.4310					, .
))	ROUTED TO	24 11.1 (28.83	3 1 (2 2 (3 3 (4 4)	6872. 194.60)(6481. 183.52)(5854. 166.06)(4244. 120.18)(•
))	ROUTED TO	25 11.1 (28.83	3) (2 3 (4	6877, 194,75)(6406, 181,40)(5756, 163,00)(4747, 120,25)(
))	ROUTED TO	26 11.	(3 1 2 (3) (3) (4	6671. 188.90)(5422. 181.85)(5691. 161.15)(4245. 120.24)(
)	Í			su	MMARY OF D	AM SAFETY ANA	LYSIS		
))	FLAN	1	ELEVATION STOSALE OUTFLOW	INITIAL 1307 37		SFILLWAY ERE 1307.00 3892. 0.		OF DAM 308.00 3833. 27.	
)		RATIO UF FMF	MAXIMUM RESERVOIR W.S.FLEV	MOREZAM HEREL MAIL RAVO	MUNIXAM STAYAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OULK TOP HOURS	TIME OF MAX COTFLOW HOURS	TIME OF FAILTHE HOURS
•		,11	1308.07	.07	3844.	61.	7.00	43.75	0.00
)	FLAN	2	ELEVATION STOSAGE OUTFLOW			SPILLWAY CRE 1307.00 3692. 0.		of DAM 368,60 3833, 27,	
)		84110 0° FrF	MAXIMUM RESISTENCE W.S.ELEV	HAXIMUM TUTTU OVER DAM	MAXIMUM STOLAGE ACHT	HAXIMUH OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
)	FLAN	3	1308.07 *!E25T0N	.07 INITIAL 130		61. Sticker Cre 1607,60		43.75 OF PAH tod.co	0.00

!

PLAN	3	•••••	ELEVATION STORAGE OUTFLOW	INITIAL 1307 37		SPILLWAY CRES 1307.00 3692. 0.		OF DAM 308.00 3033. 27.	34
		ATTO UF PHF	MAXIMUM RESERVOIR W.S.ELEV	HAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-F1		DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOUKS	TIME OF FAILURE HOURS
		.22	1308.07	.07	3844.	61.	7.00	43.75	0.00
FLAN	4	.,,,,,,	ELEVATION STOKAGE WELLTUR	Initial 130 3.		SPILLWAY CRES 1307.00 3692. 0.		DF DAM 308.00 3633. 27.	
	,	Kattii 4 	###\#\# ##\!\#\!\# ##\!\!\!\!\	MAXIMUM HT351 OVER DAN	HANIMUM STORF GE AE-FT	MAXIMUM DUTFLOW CFS	PURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
		.22	1309.07	.07	3844.	61.	7.00	43.75	0.00
				ı	PLAN 1	STATION	3		
				RATIO	HAXIHUN FLOW∙CES				
				.22	60.	1279.3	44.00		
					PLAN 2	STATION	3		
				SAT 10	HAYIMU FLOW+CF:				
				.22	60	1279.3	44.00		
					PLAN 3	STATION	3		
				RATIO	MAXIMU FEOW≠CF:				
				,22	. 60	. 1279.3	44.00		
					PLAN 4	STATION	3		
				RATIO	HAXIHU FEON+CE				
				.23	2 60	. 1279.3	3 44.00		

FLAN , STATION

4

)					ţ	PLAN 1	STATIUN	4	•	•
)					RATIO		H HAXIHUH S STAGEFFT			
)					.22	58	. 1244.8	44.50		
)					F	PLAN 2	STATIUN	4		
					RATIO	HAXIHU FLOW•CF1				
)					.22	58	. 1244.8	44.50		
)					F	PLAN 3	STATION	4		
)					RATIO	HAXINUM FLOW+CFS				
•					,22	58.	. 1244.8	44.50		
,					۴	'LAN 4	STATION	4		
,					RATIO	HARTHUM FLOW+CHS	1 HAXIHUM STAGE+FT			
)	1				,22 SU		1244.9 NM SAFETY AMA			
,		FLAV	1	001500M 8104906 87569110 A	1231 1		SPILLWAY CRES 1231.00 103. 0.	1	OF DAM 237,10 378, 3808,	
1			84113 (* £#£	MARTHUM RESERVOTA WISHELEV	HANTHUM 12514 0056 DAM	84X18/9 81, 536E 8C+1	€ei+L0¥	PERATTER OVER TEP HOURS	TIME OF MAX COTTLON MOONS	TIME OF FAILURE HOOKS
		MASS	2	ELEVATION STOSCIO POTECON	18111AE 1231 1		SPILLWAY CRES 1231.00 118. C.		OF DAM 237.50 378. 3858.	
			sarin cm.	Hanthia Senson IR Noshees	MAX (MIN) TO E H OUEN TAN	Max (M/M 31/3543) AU-F1		00541104 005-109 005-109	TIME OF MAN COTFLOW MOORS	TIME OF FATLUSE HOUSE
			.22	1034,89	0.00	283.	1.65.	0.00	42.00	0.00
), an	3	ELECTRON	INTTINE 1771		A LOWAY CRES		OF DAM 187. a	

1	ر	1

•	PLAN	3			INTTIAL	Voc.UE	SPILLWAY CRES	ST TOP	OF DAH	٠ ان
2				ELFUATION STORAGE OUTFLOW	1231		1231.00 158. 0.		237.50 378. 3858.	
)			RATIO	HAXIMUH	MAXIMUM	HAXIHUH	HAXIHUH	DURATION	TIME OF	TIME OF
)			OF PMF	RESERVOIR W.S.ELEV	DEPTH OVER DAM	STORAGE AC-FT	OUTFLOW CFS	OVER 10P HOURS	MAX OUTFLOW HOURS	FAILURE HOURS
)			.22	1234.89	0.00	283.	1786.	0.00	42.00	0.00
)	PLAN	4	•••••	ELEVATION STURAGE OUTFLOW	INITIAL 1231 1		SPILLWAY CRES 1231.00 158. 0.		OF DAM 237.50 378. 3858.	
)				4477.254		••	•		30301	
)			RATIO (IF FMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAYINUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
)			.22	1234.89	0.00	283.	1786.	0.00	42.00	0.00
•					Р	LAN 1	STATION	8		
)					RATIO	MAXIMU FLOW≠CF				
,					.22	1785	. 1211.6	42.00		
					F	LAN 2	STATION	8		
•			,		RATIO	MAXIMU FLOW,CF				
)					.22	1785	1211.6	42.00		
•					F	PLAN 3	STATION	8		
)					RATIO	MAXINU FLOW+CF				
)				•	.22	1785	5. 1211.6	42.00		
)					F	PLAN 4	STATION	8		
)					RATIO	MAXIMU FLOW,CH				
)	1				•22 St). 1211.6 PAN SAFETY ANA			

21 6N 1

THEFT THE COLUMN THE PROPERTY OF THE

)	.i.			Jui	IIIINNI UI B	nd onfEll han	EFJ10		
•	FLAN	1	ELEVATION Sturage	INITIAL 1169	98	SPILLWAY ERE		OF DAM 75.50	
)			OUTFLOW	(0.	62.		147. 5505.	
)		RATIO OF PMF	HAXIHUM RESERVOIR W.S.ELEV	HAXIHUN DEPTH OVER DAN	MAXIMUM STORAGE AC-11	HAYTHUH OUTFLON CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILUKE HUUKS
)		•22	1173.64	0.00	114.	2967.	0.00	42.00	0.00
)	FLAN	. 2	ELEVATION	INITIAL 1169		SPILLWAY CRE		DF DAM 175.50	
•			STORAGE OUTFLOW	,	61. 0.	62. 0.		147. 5505.	
)		RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEFTH OVER DAM	MAXIMUM STORAGE AC-F1	MAXINUM OUTFLOW CFS	DURATION OVER 10P HOURS	TIME OF HAX UUTFLOW	TIME OF FAILURE HOURS
)		,22	1173.64	0.00	114.	2967.	0.00	42.00	0.00
)	FLA	N 3	FLEVATION STORAGE	INITIAL 1169	.98 61.	SPILEWAY CRI 1170.00 62.		OF DAM 175.50 142.	
)		RATIO	OUTFLOW	MAVIMIN	0.	0.	bilfiattou	5505.	TINE OF
)		OF FMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEFTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX CUTFLOW HOURS	TIME OF FAILUKE HOURS
•		•22	1173.64	0.00	114.	2967.	0.00	42.00	0.00
)	FLA	N 4	FLEVATION SIDIO165 OUTFLOW	INITIAL 1169		SPILLWAY CR 1170.00 62. 0.	1	0F DAM 175.50 147. 5505.	
)		RATIO	нахімин	MUHIYAM	нахімин		DURATION	TIME OF	TIME OF
,		(F Finf	RESERVATR WISIELEV	PERTH OVER DAM	S10RAGE AC-F1		OVER TOP HOURS	MAX OUTFLOW HOURS	FAILURE HOURS
)		,32	1173.64	0.00	114.	2967.	0.00	42.00	0.00
)				(PLAN 1	STATION	12		
)				RATIO	HAS IN FLOWIE				
)				.22	198	ы. 1151.	6 42,25		

,		_,,,,,	*****	12125
3	PLA	N 2	STATION	12
•	RATIO		HAXIHUM STAGE:FT	TIME HOURS
)	•22	2964.	1151.6	42.25
)	FLA	in 3	STATION	12
	RATIO	MAXIMUM FLOW/CFS	MAXIMUM STAGE+FT	TIME HOURS
)	•22	2964.	1151.6	42.25
ď	PLA	AN 4	STATION	12
3	RATIO	MAXIMUM FLOW∙CFS	HAXIMUH STAGE+FT	TIME HOURS
>	.22	2964.	1151.6	42.25
•	PL#	AN 1	STATION	13
)	RATIO	MAXIMUM FLOW, EFS	MAXIMUM STAGE+FT	TIME RAYCH
)	.22	2959.	1085.2	42.25
	FL.	AN 2	STATION	13
•	RATIO	HAXIHUM FLOW≠CFS	HAXIMUM STAGE•FT	TIME HOURS
)	.22	2959.	1085.2	42.25
•	የኒ	AN 3	STATION	13
•	RATIO	HAXIHUM FLOW≠CES	MAXIMUM STAGE+FT	TIME HOURS
•	.22	2959.	1085.2	42.25
	FL	AN 4	STATION	13
)	RATIO		MAXTMUM STAGE≠FT	
1	.22		1085.2	42.25
)	SUM	INHKT UF DA	N SAFETY ANA	r1912

1'LAN 1

.22 2964. 1151.6 42.25

THITTAL VALUE SPILLWAY CREST TOP OF DAM

PLAN	1	ELEVATION STOKAGE OUTFLOW			SPILLWAY CRES 1266.00 353. 0.		OF DAM 267.00 392. 27.	
	RATIO OF FHF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-Fi		DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	•22	1267.46	.46	411.	147.	8.00	42.75	0.00
FLAN	2	FLEVATION STURAGE OUTFLOW			SPILLWAY CRES 1266.00 353. 0.		OF DAM 267.00 392. 27.	
	RATIO OF FMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	HAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTLOW HOURS	TIME OF FAILURE HOURS
	.22	1267.46	•46	411.	147.	8.00	42.75	0.00
FLAN	3	ELEVATION STORAGE OUTFLOW	1265	VALUE .97 52. 0.	SPILLWAY CRES 1266.00 353. 0.		DF DAM 267.00 392. 27.	
	RATIO UF EHE	MAXINUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STOKAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION CVEK TOP HOURS	TIME OF MAX OUTFLON HUURS	TIME OF FAILURE HOURS
	,22	1267.46	.46	411.	147.	8.00	42.75	0.00
FLAN	4	FLEVATION STORAGE OUTFLOW			SPILLWAY CRE 1286.00 353. 0.		OF DAM 267.00 392. 27.	
	RATIO OF EME	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STURAGE ACHET	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	.22	1267.46	.46	411.	147.	8.00	42.75	0.00
			F	PLAN 1	STATION	16		•
			RATIO	MAXIM FLOW•Ci				
			.22	14	7. 1200.9	42.75		

_					FL	AN 1	STATION	16		
•					RATIO	MAXIMUM FLOW+CFS		TIME HOURS		
1					•22	147.	1200.9	42.75		
•					PL	.AN 2	STATION	16		
3					RATIO	MAXIMUM FLOW+CFS		TIME HOURS		
3					.22	147.	1200.9	42.75		
					PL	.AN 3	STATION	16		
)					RATIO	MAXIMUM FLOW,CFS				
3					•22	147.	1200.9	42.75		
3					Pl	LAN 4	STATION	16		
•					RATIO	MAXIMUM FLOW/CFS				
•	1				•22 SUI		1200.9 M SAFETY ANA		•	
3		PLAN	1		INITIAL	VALUE	SPILLWAY CRE	ST TOP	OF DAH	
)				ELEVATION STORAGE OUTFLOW	1176 1	.00 92. 0.	1176.00 192. 0.	1	178.00 334. 313.	
3			RATIO	HAXIHUH	HUNIXAM	HUKIXAH	HUMIXAM	DURATION	TIME OF	TIME OF
			OF PMF	RESERVOIR W.S.ELEV	DEPTH OVER DAM	STORAGE AC-FT	OUTFLOW CFS	OVER 10P HOURS	MAX OUTFLOW HOURS	FAILURE HOURS
•			.22	1178.09	.09	342.	355.	2.50	44.25	0.00
		PLAN	2		INITTAL	VALUE	SPILLWAY CRE	ST TOP	DE DAM	•
)				ELEVATION STORAGE OUTFLON	1176 1	.00 92. 0.	1176.00 192. 0.	1	178.00 334. 313.	
)						•	٧.		3131	
)			RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	MAXIHUH DEPTH OVER DAM	MAXIMUM STURAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
•			•22	1178.09	.09	342,	355.	2.50	44.25	0.00
•		FLAN	3	FIFUNTION	JATTINI 4554		SPILLWAY FRE		DE DAN	

3

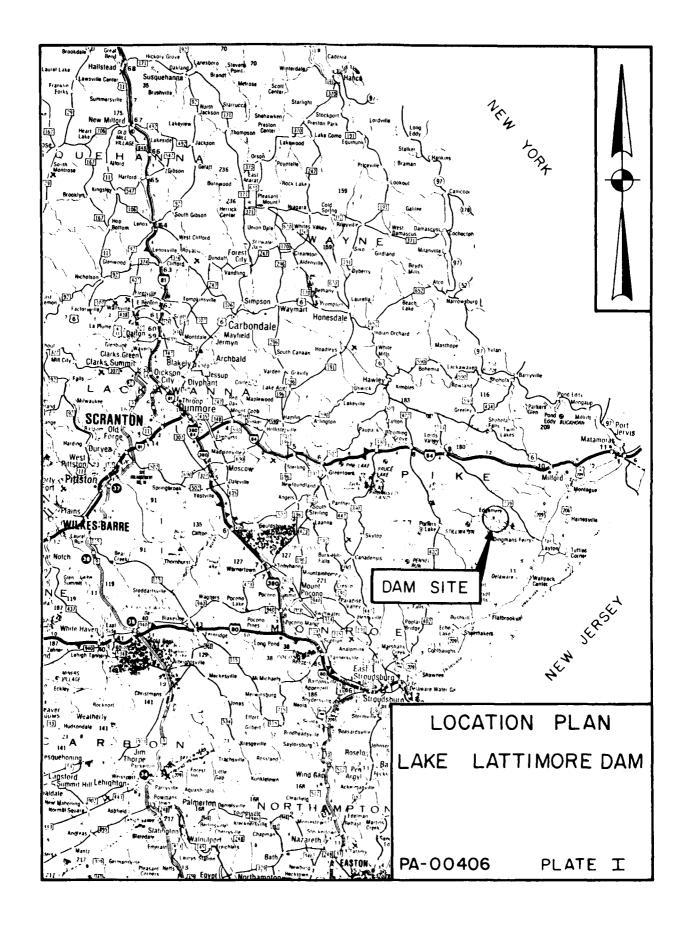
•		•22	1178.09	.09	342.	355,	2.50	44.25	0.00
•	PLAN	3	ELEVATION Storage	INITIAL 1176		SPILLWAY CRES 1176.00 192.		OF DAM .78.00 .334.	•
•			OUTFLOW	•	0.	0.		313.	
)		RAYIO OF FMF	MAXIHUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAN	MAXIMUM STORAGE AC-FT		DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILUKE HOURS
)		.22	1178.09	•09	342.	355.	2.50	44.25	0.00
>	FLAN	4	ELEVATION	INITIAL 1176		SPILLWAY CRES		OF DAM 173.00	
)			STORAGE OUTFLOW		92.	192.	••	334. 313.	
•		RAT10 UF	MAXIMUM RESERVOIR	MAXIMUM DEPTH	MAXIMUM STORAGE	MAXIMUM OUTFLOW	DURATION OVER TOP	TIME OF MAX OUTFLOW	TIME OF FAILURE
)		PMF .22	W.S.ELEV 1178.09	OVER DAM	AC-FT 342.	CFS 355.	HOURS	HOURS	HOURS
)		122	1170107		342. LAN 1		2.50	44.25	0.00
•				r	HAYIHUM	STATION HAXIHUH	20 TIME		
,				RATIO	FLOW+CFS		HOURS		
				.22	354.	1081.1	44.25		
•				F	LAN 2	STATION	20		
)				RATIO	HAXIHU! FLOW.CFS		TIME HOURS		
)				•22	354	1081.1	44.25		
)				F	LAN 3	STATION	20		
•				RATIO	MAXIMUM FLOW•CFS				
,				.22	354	1081.1	44.25		
)				F	PLAN 4	STATION	20		
)				RATIO	MAXIBUS FLOW(C)	i HAXIMUM 3 STAGE+FT			
)					354	. 1081.1 AM SAFETY ANA	44,25		

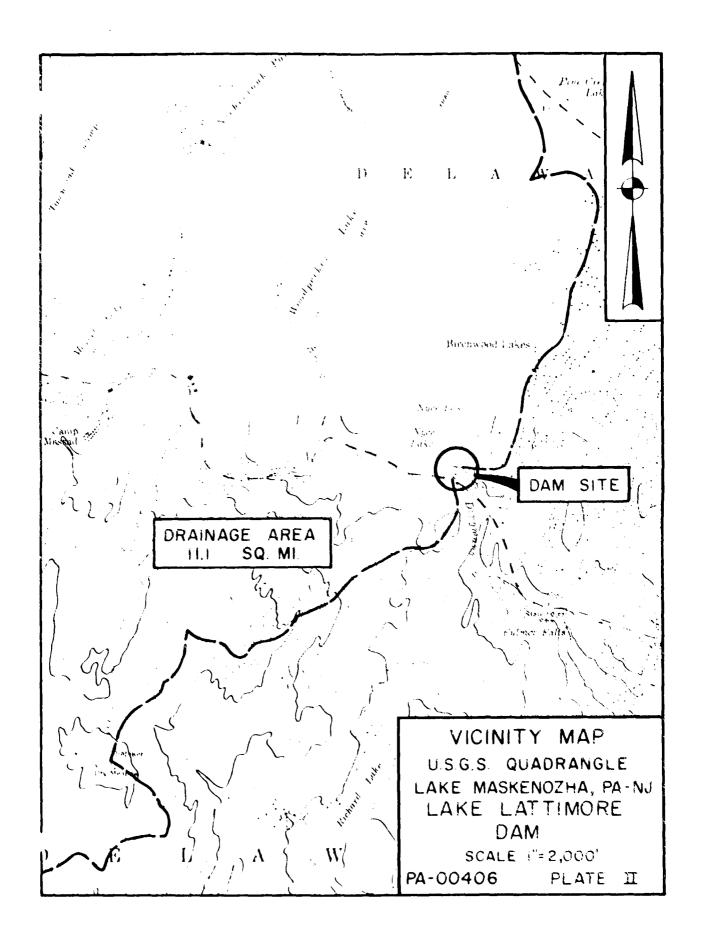
1

FLAN	1	INITIAL VALUE ELEVATION 1040.50 STORAGE 194. OUTFLOW 0.		.90 94.	SPILLWAY CRE 1040.90 174. 0.		OF DAM 044.90 433. 3322.	
	RATIO OF FMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH NAC RAVO	MAXIMUM STORAGE AC-FT	HAXIHUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	•22	1045.42	•52	468,	7478.	1.29	42.50	42.25
FLAN	2	ELEVATION STORAGE OUTFLOW	INITIAL 1040 1		SPILLWAY CRE 1040.90 194. 0.		OF DAM 044.90 433. 3322.	
	RATIO QF FMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	.22	1045.43	•53	468.	6853.	1.44	42.75	42.25
PLAN	3	ELEVATION STORAGE OUTFLOW	INITIAL 1040 1		SPILLWAY CRE 1040.90 194. 0.		OF DAM 044.90 433. 3322.	
	RATIO OF FMF	MAXIMUM RESERVOIR W.S.ELEV	MUMIYAM HT930 Mad Rayo	MAXIMUM STOKAGE AC-FT	MAXIMUM OUTFLOW CFS	BURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	.22	1045.43	.53	469.	5954.	1.71	43.25	42.25
FLAN	4	ELEVATION STORAGE OUTFLOW			SPILLWAY CRE 1040.90 194. 0.		OF DAM 044.90 433. 3322.	
	RATIO OF PMF	MAYIMUM RESERVOIR W.S.ELEV	MUNIXAN Depih Nad Savo	MAXIMUM STORAGE AC-FT	HAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
	•22	1045,51	.61	474.	4253.	3.25	42.75	0.00

PLAN 1 STATION 24

SHIT MUHTYAN KUHINAH


9		i Lha	i	2141704	.4	
,	RATI	0 1	MAXIHUH FLOW•CFS	MARIBUH STAGE+FT		TIME HOURS
)	•2	2	6872.	983.0		42.75
		PLAN	2	STATION	24	
•	RATI	D 1	MAXIMUM Lúwycha	MAXIMUM STAGE,FT		TIME HOURS
•				982.8		
•		PLAN	3	STATION	24	
•	RATI			HUHIXAM		
)		2		982.5		
)		PLAN	4	STATION	24	
•	RATI		MAXIMUM FLOW+CFS	MAXIMUM STAGE∗FT		
)	•2	2	4244.	981.6		42.75
,		PLAN	i	STATION	25	
)	D. T. T.			HUNIXAN		TIME
)	RATI		FLOW,CFS 6877.			HOURS 42.75
)			2	STATION	25	12473
•	RATI		HAXIMUM FLOW/CFS	MAXIHUM		TIME HOURS
)	• 2:		6406.	781.2		43.00
1		FLAN	3	STATION	25	
,	RATI	D 1	MAXIMUM FLOW≠CFS			TIME HOURS
)	•2	2	5756.	780.8		43.25
,		FLAN	4	STATION	25	
)	RATIO) i	HAXINUH TOWACES			TIME HOURS
)	•2		4247,			43.00


3/-/

)			PLAN	3	STATION	25
)		RATIO	F	HAXIMUM LOW+CFS	MAXIMUM STAGE,FT	TIME Hours
)		•22		5756.	780.6	43.25
			FLAN	4	STATION	25
)		RATIO			MAXIMUM STAGE*FT	TTHE HOURS
)		•22		4247.	780.0	43.00
)			PLAN	1	STATION	26
•		RATIO	ı F	MAXIMUM LOW,CFS	HAXIHUH STAGE,FT	TIME HOURS
•		•22		6671.	754.1	42.75
)			PLAN	2	STATION	26
)		RATIO) F	HAXIHUM LOW≠CFS	MAXIHUM STAGE,FT	TIHE HOURS
)		• 22)	6422.	754.0	43.00
			PLAN	3	STATION	26
)		RATIO		HAXIHUH FLOW,CFS	MAXIMUM STAGE,FT	
)		•22	2	5691.	753.5	
)			FLAN	4	STATION	26
)		RATIO) F	HAXTHUH LOW,CFS		
>	EOI ENCOUNTERED.	•22	?	4246.	752.5	43.00
)	DERMINAL 255 TIME DUT. FYE 80/06/12, 07:13:12, YZ					
)						

APPENDIX E

PLATES

ELEV (045

EFECT ASS

TWO 4PA REINFOR JEE COLUM

SECTION G-H SCALE 1:45

With the state of the state of

e de la companya del companya de la companya de la companya del companya de la co

A DESCRIPTION OF THE PROPERTY OF THE PROPERTY

BERGER ASSOCIATES INC MARRISBURG PA F/G 13/13 NATIONAL DAM INSPECTION PROGRAM. LAKE LATTIMORE DAM (NDI-ID NUM-ETC(U) JUN 80 DACW31-60-C-0019 AD-A087 905 UNCLASSIFIED NL END DATE 9-80 DTIC

ELLY 1045 ELOW LINE ELEV. 04,5000 MAL SURFACES TIMBER CORE SCLAY PUDDLE

SECTIONS OF CIDE BREAST FROM SIDE BREAST MAN. BREAST EXTENDING THROUGH TO STA.

3

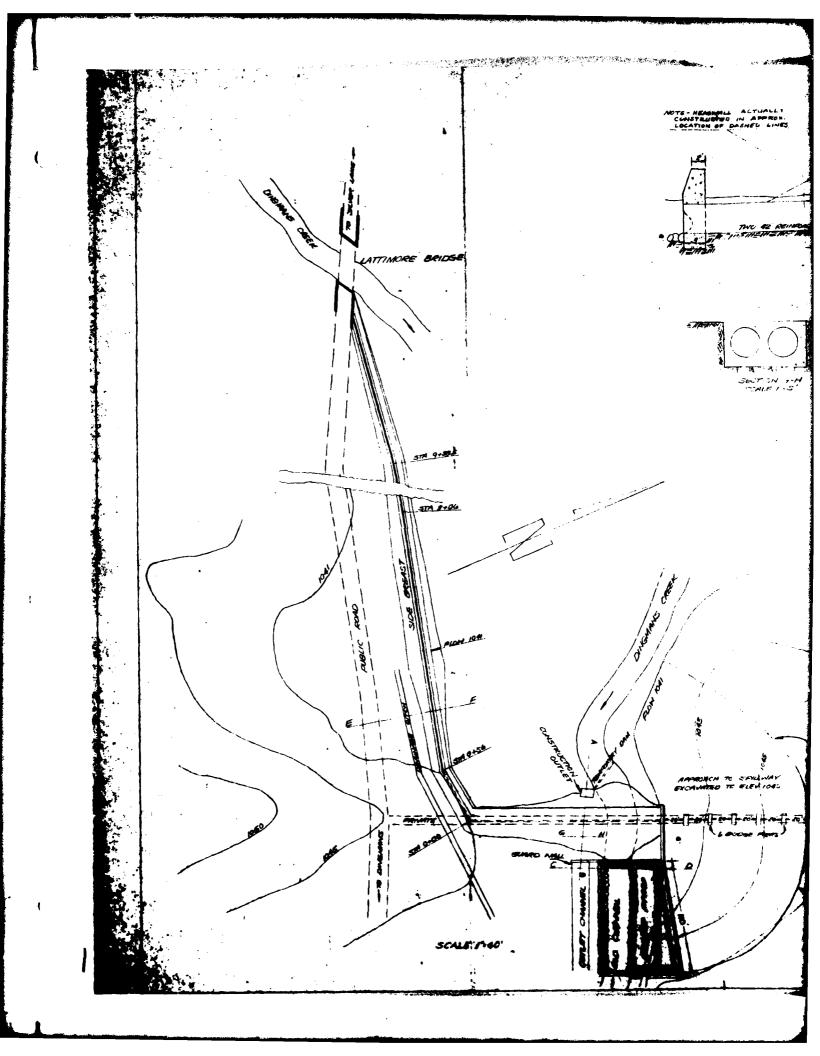
PA-00406 PLATE III PRESENT SURFACE

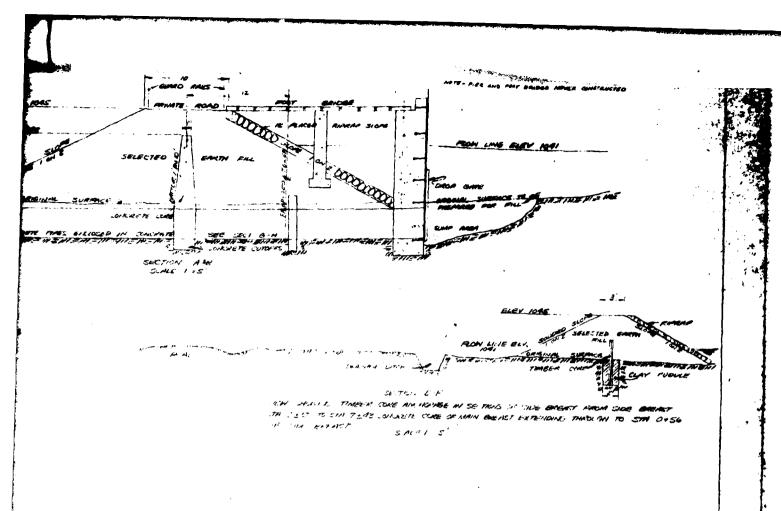
A2"

42"

CONSTRUCTION DOLLET

STREAM I'M CHORLE COTOS


THE TOP OF SHIP ON SHIP ON SHIP


一をしどり、10.37。

MIEY 1034 7

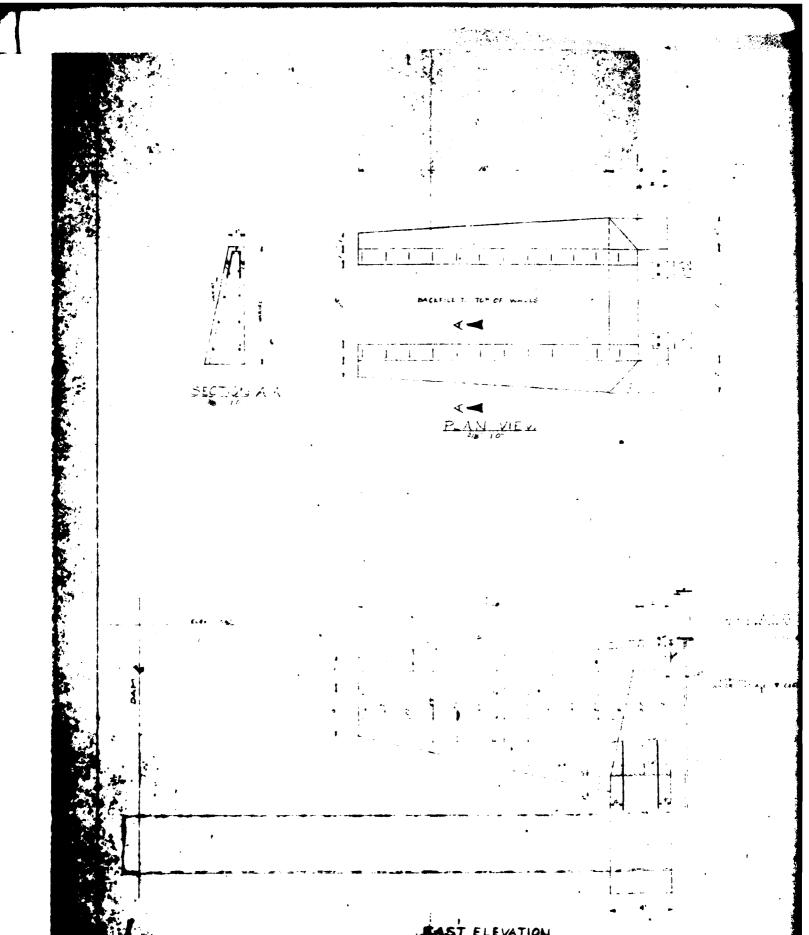
GROWTED RITION

PA-00 PLATE

France I was at Form . .

MILE LAKE Burk Gire Louis Come of Grenner Espen Courts has Jerser

LECTURE TOWNSHIP - PIRE COUNTY HENVA JUNE 23, 1870 STREET AS SHOWN


FOWARD (HESS ASSOCIATES
STRONDSBURG, PA

DEAWINGS TITLEL SELLERAL IT AN CHTTIMONE DAY

Revised 500-19, 476

Sweet for #

19.07 (19.07)

NOTES:

/ ALL CONCRETE TO BE CLASE D'

Z REMFOREINE TO BE "5 BARS - /8" C.C.

3 DOWNELS IN EPISTIES "GUILDATION TO BE "7 BARS

REGISED WORK:

REGISED WORK:

REGISE TOP SECTION OF EXISTING TOWER (4-11-19-5)

REAL CHANGE IN FRONT OF GATES

REGISERIZET TEWER AND TWO NEW WING WALLS.

S. REGISERIZET AND BRACKETS

S. BERIAGE LIPPE AND BRACKETS

S. BERIAGE LIPPE AND BRACKETS

THE SPECIAL REPAIRS

NYCE LAKE

DESCRIPTION CONTROL OF GREATER ESSEN CONTROL NON JORGE

DELAWARE TRAVERIP - PIKE COURTY - PONNA CED- 3 1470 SLAWE AS CHOMI

EDWARD C HESS ASSOCIATED

MORTH LEWITON

.

hour D

APPENDIX F
GEOLOGIC REPORT

GEOLOGIC REPORT

Bedrock - Dam and Reservoir

Formation Name: Towamensing Member of the Catskill Formation.

Lithology: Fine to medium grained, gray calcareous sandstone, with interbeds of olive to gray shales and siltstone. The sandstones make up 90% of the formation and are thick bedded with distinct cross-lamination. Lenses of calcareous conglomerate are locally present.

Structure

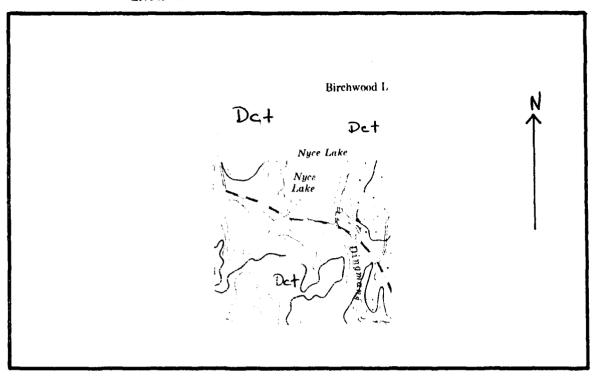
The dam is located near the eastern edge of the Pocono Plateau. The regional strike of the beds is N40°E and the dip is a few degrees to the northwest. Minor folds are superimposed on the regional dip and locally dips as high as 15° occur. No faults are mapped in the vicinity of the dam. Joint sets trending N2° to 13°E and N82°E to N75°W are reported.

Air photo fracture traces trend: N5°E and N40°W.

Overburden

This site is within the limits of Pleistocene glaciation and variable thicknesses of glacial till and outwash sediments are present. The records of borings along the centerline of the dam show one to three feet of topsoil and "clay" above "hardpan." The borings were all less than ten feet deep and no rock was encountered. Inspection reports written during construction describe the "hardpan" as containing clay, boulders and some sandy layers. It is likely that this material is glacial till.

Aquifer Characteristics


The rocks of the Catskill formation are essentially impermeable and ground water movement is entirely along bedding planes and fractures. The most permeable aquifers in the area are the sands and gravel of the glacial outwash commonly found in the valleys.

Discussion

This dam is constructed with a cutoff trench dug into the glacial till. There was some indication that some of the sandy layers were water bearing, but the till is probably a quite suitable foundation material for a dam of this type.

Sources of Information

- 1. Fletcher, F.W. and Woodrow, Donald L. (1970), "Geology and Economic Resources of the Pennsylvania Portion of the Milford and Port Jervis 15-Minute Quadrangles," Pa. Geologic Survey Atlas 223, Harrisburg, Pa.
- 2. Sevon, W.D., et al., "Geology and Mineral Resources of Pike County," open file report, Pa. Geologic Survey, Harrisburg, Pa.
- 3. Air photographs dated 1973, scale 1:40,000.
- 4. Plans and inspection reports in file.

Dct

Catskill Fm.- Towamensing member

air photo fracture trace

DA FILM